Oral administration of essential oils and main components: Study on honey bee survival and Nosema ceranae development

2017 ◽  
Vol 56 (5) ◽  
pp. 616-624 ◽  
Author(s):  
Martín Pablo Porrini ◽  
Paula Melisa Garrido ◽  
Liesel Brenda Gende ◽  
Cármen Rossini ◽  
Laura Hermida ◽  
...  
2010 ◽  
Vol 5 (2) ◽  
pp. 1934578X1000500 ◽  
Author(s):  
Maria Graça Miguel ◽  
Cláudia Cruz ◽  
Leonor Faleiro ◽  
Mariana T. F. Simões ◽  
Ana Cristina Figueiredo ◽  
...  

The essential oils from Foeniculum vulgare commercial aerial parts and fruits were isolated by hydrodistillation, with different distillation times (30 min, 1 h, 2 h and 3 h), and analyzed by GC and GC-MS. The antioxidant ability was estimated using four distinct methods. Antibacterial activity was determined by the agar diffusion method. Remarkable differences, and worrying from the quality and safety point of view, were detected in the essential oils. trans-Anethole (31-36%), α-pinene (14-20%) and limonene (11-13%) were the main components of the essentials oil isolated from F. vulgare dried aerial parts, whereas methyl chavicol (= estragole) (79-88%) was dominant in the fruit oils. With the DPPH method the plant oils showed better antioxidant activity than the fruits oils. With the TBARS method and at higher concentrations, fennel essential oils showed a pro-oxidant activity. None of the oils showed a hydroxyl radical scavenging capacity >50%, but they showed an ability to inhibit 5-lipoxygenase. The essential oils showed a very low antimicrobial activity. In general, the essential oils isolated during 2 h were as effective, from the biological activity point of view, as those isolated during 3 h.


2021 ◽  
Vol 217 ◽  
pp. 112258
Author(s):  
Hanine Almasri ◽  
Daiana Antonia Tavares ◽  
Marie Diogon ◽  
Maryline Pioz ◽  
Maryam Alamil ◽  
...  

2012 ◽  
Vol 109 (2) ◽  
pp. 187-193 ◽  
Author(s):  
Brenna E. Traver ◽  
Matthew R. Williams ◽  
Richard D. Fell

2016 ◽  
Vol 21 (10) ◽  
pp. 1681
Author(s):  
Vahid Ghasemi ◽  
Saeid Moharramipour ◽  
Gholam Hossein Tahmasbi

Varroosis is a disease of Apis mellifera L. caused by the mite Varroa destructor Anderson and Trueman. Essential oils and their chemical constituents offer a safe alternative to synthetic acaricides for the control of this mite in bee hives. The present study was conducted to evaluate anti-parasitic activity of essential oils from Thymus kotschyanus Bioss & Hohen., Mentha longifolia L., Eucalyptus camaldulensis Dehnh., and Ferula gummosa L. at concentrations of 1, 2.5, 4, and 5.5 µl/l air for 5 and 10 h. Findings indicated that mite mortality increased as oils concentration and exposure time increased. T. kotschyanus oil at 5.5 µl/l air caused a mite mortality rate of 54.4% and 84.43% after 5 and 10 h fumigation, respectively. At the same concentration and exposure time, the honey bee mortality was 0% and 7.2%, respectively. Application of M. longifolia and E. camaldulensis oils at 5.5 µl/l air resulted in 65.53% and 71.06% mortality in Varroa mites and 10.13% and 12% mortality in honey bees after 10 h exposure. Despite moderate acaricidal activity of F. gummosa oil against Varroa mite (49.69%), it was highly toxic to honey bee (30%). Also, GC/MS analysis of the oils showed that carvacrol (47.99%) and thymol (30.61%) in T. kotschyanus oil, piperitenone (36.86%), piperitenone oxide (27.53%),Cispiperitone epoxide (22.21%), and pulegone (8.38%) in M. longifoliaoil, 1,8-cineol (74.7%) and α-pinene (8.35%) in E. camaldulensis oil, and β-pinene (87.29%) in F. gummosa oil were the main chemical constituents. Collectively, our results led to a conclusion that T. kotschyanus, M. longifolia, and E. camaldulensis oils have enough potential to play an important role in integrated control programs of varroosis in apiaries. 


Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1182
Author(s):  
Roberto Bava ◽  
Fabio Castagna ◽  
Cristian Piras ◽  
Ernesto Palma ◽  
Giuseppe Cringoli ◽  
...  

Varroa destructor is the most important ectoparasitic mite of honey bees that has a negative impact on bee health and honey production. The control programs are mainly based on the use of synthetic acaricides that are often administered indiscriminately. All this has led to drug resistance that now represent a great concern for honey bee farming. The research for alternative products/methods for mites’ control is now mandatory. The aim of this study was to test whether Citrus spp. essential oils could diminish the growth of the V. destructor mite. In Calabria (southern Italy), plants of the Citrus genus are very common and grow both spontaneously and cultured. The essential oils used in this study were extracted from bergamot (Citrus bergamia), grapefruit (Citrus paradisi), lemon (Citrus limon), orange (Citrus sinensis), and mandarin (Citrus reticulata) by hydrodistillation. Every EO was in vitro tested against V. destructor. Each experimental replicate was performed using 35 viable adult female mites (5 for each EO) collected the same day from the same apiary and included negative controls (5 individuals exposed to acetone only) and positive controls (5 individuals exposed to Amitraz diluted in acetone). The essential oils (Eos) were diluted (0.5 mg/mL, 1 mg/mL, and 2 mg/mL) in HPLC grade acetone to obtain the working solution to be tested (50 µL/tube). Mite mortality was manually assessed after 1 h exposure under controlled conditions. The essential oils that showed the best effectiveness at 0.5 mg/mL were bergamot, which neutralized (dead + inactivated) 80% (p ≤ 0.001) of the parasites; grapefruit, which neutralized 70% (p ≤ 0.001); and lemon, which neutralized 69% of them. Interestingly, the positive control (Amitraz) at the same concentration neutralized 60% of the parasites. These results demonstrate that Calabrian bergamot, grapefruit, and lemon Eos consistently reduced V. destructor viability and open the possibility for their utilization to control this parasite in honey bee farming.


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1045
Author(s):  
Marian Hýbl ◽  
Andrea Bohatá ◽  
Iva Rádsetoulalová ◽  
Marek Kopecký ◽  
Irena Hoštičková ◽  
...  

Essential oils and their components are generally known for their acaricidal effects and are used as an alternative to control the population of the Varroa destructor instead of synthetic acaricides. However, for many essential oils, the exact acaricidal effect against Varroa mites, as well as the effect against honey bees, is not known. In this study, 30 different essential oils were screened by using a glass-vial residual bioassay. Essential oils showing varroacidal efficacy > 70% were tested by the complete exposure assay. A total of five bees and five mites were placed in the Petri dishes in five replications for each concentration of essential oil. Mite and bee mortality rates were assessed after 4, 24, 48, and 72 h. The LC50 values and selectivity ratio (SR) were calculated. For essential oils with the best selectivity ratio, their main components were detected and quantified by GC-MS/MS. The results suggest that the most suitable oils are peppermint and manuka (SR > 9), followed by oregano, litsea (SR > 5), carrot, and cinnamon (SR > 4). Additionally, these oils showed a trend of the increased value of selective ratio over time. All these oils seem to be better than thymol (SR < 3.2), which is commonly used in beekeeping practice. However, the possible use of these essential oils has yet to be verified in beekeeping practice.


2021 ◽  
pp. 211-217
Author(s):  
Irina Dement'yevna Zykova ◽  
Aleksandr Alekseyevich Efremov

The antiradical properties of essential oils from the inflorescences of Filipendula ulmaria (L). Maxim, herbages Hypericum perforatum L. and Pulmonaria mollis Wulfen ex HORNEM., growing on the territory of the Krasnoyarsk territory were studied. For this purpose, the reaction of essential oil components with a stable free 2,2-diphenyl-1-picrylhydrazyl radical was used. Essential oil of the plants under study received comprehensive hydroponically. The component composition of the oils was determined by chromatography-mass spectrometry. The main components of essential oil of F. ulmaria inflorescences are methyl salicylate (28.2%), salicylic aldehyde (2.8 %) and linalool (4.9%), essential oil of H. perforatum – γ - amorphene (30.7%), δ-cadinen (7.1%), (E, E)-β-farnesene (5.5%), caryophyllene (5.0%), ledol (5.0%), essential oil of P. mollis – di-n-butyl phthalate (18.7%), docosan (13.4%), tetracosan (11.6 %). The results of the DPPH test showed that the essential oils of the inflorescences of F. ulmaria and the aboveground part of H. perforatum and P. mollis exhibit antiradical activity (ARA). According to the size of the ARA of essential oils, the studied plants can be arranged in the following row: P. mollis > F. ulmaria > H. perforatum.


Molecules ◽  
2021 ◽  
Vol 26 (20) ◽  
pp. 6311
Author(s):  
Paulina J. Cázares-Samaniego ◽  
Claudia G. Castillo ◽  
Miguel A. Ramos-López ◽  
Marco M. González-Chávez

Ulomoides dermestoides are used as a broad-spectrum medical insect in the alternative treatment of various diseases. Preliminary volatilome studies carried out to date have shown, as the main components, methyl-1,4-benzoquinone, ethyl-1,4-benzoquinone, 1-tridecene, 1-pentadecene, and limonene. This work focused on the production of metabolites and their metabolic variations in U. dermestoides under stress conditions to provide additional valuable information to help better understand the broad-spectrum medical uses. To this end, VOCs were characterized by HS-SPME with PEG and CAR/PDMS fibers, and the first reported insect essential oils were obtained. In HS-SMPE, we found 17 terpenes, six quinones, five alkenes, and four aromatic compounds; in the essential oils, 53 terpenes, 54 carboxylic acids and derivatives, three alkynes, 12 alkenes (1-Pentadecene, EOT1: 77.6% and EOT2: 57.9%), 28 alkanes, nine alkyl disulfides, three aromatic compounds, 19 alcohols, three quinones, and 12 aldehydes were identified. Between both study approaches, a total of 171 secondary metabolites were identified with no previous report for U. dermestoides. A considerable number of the identified metabolites showed previous studies of the activity of pharmacological interest. Therefore, considering the wide variety of activities reported for these metabolites, this work allows a broader vision of the therapeutic potential of U. dermestoides in traditional medicine.


2021 ◽  
Author(s):  
Li Liu ◽  
Gongxiu He ◽  
Xu Wang ◽  
Dangquan Zhang

Abstract Background: Phoebe bournei is a potential medicinal plant whose essential oil (EO) from leaves has potential inhibitory activities against some bacterium, tumor, and has a certain potential for hypoglycemic activity. Fertilization is a common and effective method to increase plant biomass, which can increase the raw material of essential oil, but has a certain impact on the composition and biological activity of plant essential oil. Results: The main components are sesquiterpenes in the essential oils from leaves and twigs. The yield of the essential oils and the content of their main components can be modulated by compost and compound fertilizer, to different degrees, and minor differences were registered among the categories of the components in essential oils. However, changes were strongly mirrored in some main components of essential oils. The content of the primary (+) - calarene in the leaf EO were strongly increased by compost, but the opposite happened by compound fertilizer. On the contrary, the effect of compound fertilizer was more significant on the main components of twig essential oil than compost. The transcriptome sequencing results of P. bournei showed that the total number of DEGs in twigs and leaves treated with compost were significantly more than that with compound fertilizer. No change was found in the expression of genes regulating principal components. However, the expression of several key genes regulating the upstream substrates for the synthesis of the sesquiterpenes was significantly changed: the expression of two key speed limiting enzymes genes (DXS and HMGR) and two important branch-point enzyme genes (FPPS and GGPPS) was significantly down regulated, while the expression of gene (HMGS) was significantly up-regulated.Conclusion: The expression levels of genes (DXS2, HMGR, FPPS and GGPPS) were significantly down regulated in leaves treated with compost, resulting in the changes of the yield and main components of the leaf essential oil. The effect of compost was more significant on the synthesis of the essential oil from P. bournei leaves than that of compound fertilizer.


Sign in / Sign up

Export Citation Format

Share Document