Aggregation, interaction and thermodynamic characteristics of cationic surfactant + moxifloxacin hydrochloride mixture in aquatic solutions of mono-/di-hydroxy compounds

2020 ◽  
pp. e1849839
Author(s):  
Miah Muhammed Muktadir Rashid ◽  
Marzia Rahman ◽  
Mohammad Majibur Rahman ◽  
Shamim Mahbub ◽  
Dileep Kumar ◽  
...  
Lipid / Fett ◽  
1989 ◽  
Vol 91 (1) ◽  
pp. 41-43
Author(s):  
P. H. Kothwala ◽  
K. T. Parekh ◽  
P. Bahadur

Author(s):  
I. Khidirov ◽  
V. V. Getmanskiy ◽  
A. S. Parpiev ◽  
Sh. A. Makhmudov

This work relates to the field of thermophysical parameters of refractory interstitial alloys. The isochoric heat capacity of cubic titanium carbide TiCx has been calculated within the Debye approximation in the carbon concentration  range x = 0.70–0.97 at room temperature (300 K) and at liquid nitrogen temperature (80 K) through the Debye temperature established on the basis of neutron diffraction analysis data. It has been found out that at room temperature with decrease of carbon concentration the heat capacity significantly increases from 29.40 J/mol·K to 34.20 J/mol·K, and at T = 80 K – from 3.08 J/mol·K to 8.20 J/mol·K. The work analyzes the literature data and gives the results of the evaluation of the high-temperature dependence of the heat capacity СV of the cubic titanium carbide TiC0.97 based on the data of neutron structural analysis. It has been proposed to amend in the Neumann–Kopp formula to describe the high-temperature dependence of the titanium carbide heat capacity. After the amendment, the Neumann–Kopp formula describes the results of well-known experiments on the high-temperature dependence of the heat capacity of the titanium carbide TiCx. The proposed formula takes into account the degree of thermal excitation (a quantized number) that increases in steps with increasing temperature.The results allow us to predict the thermodynamic characteristics of titanium carbide in the temperature range of 300–3000 K and can be useful for materials scientists.


2014 ◽  
Vol 51 (1) ◽  
pp. 11-16 ◽  
Author(s):  
Dalia E. Mohamed ◽  
Amr O. Habib ◽  
Ismail Aiad

2021 ◽  
Author(s):  
R. R. Samal ◽  
Aneeya K. Samantara ◽  
S. Mahalik ◽  
J. N. Behera ◽  
B. Dash ◽  
...  

Correction for ‘An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors’ by R. R. Samal et al., New J. Chem., 2021, 45, 2795–2803; DOI: 10.1039/D0NJ05088A.


2020 ◽  
Vol 92 (8) ◽  
pp. 1227-1237
Author(s):  
Ivan. S. Pytskii ◽  
Irina V. Minenkova ◽  
Elena S. Kuznetsova ◽  
Rinad Kh. Zalavutdinov ◽  
Aleksei V. Uleanov ◽  
...  

AbstractThe article describes a comprehensive mass spectrometric approach to the study of surfaces of structural materials. The combined use of thermal desorption mass spectrometry, gas and liquid chromatography, and laser desorption/ionization mass spectrometry (LDI) to provide information about the surface and surface layers of materials is proposed. The suggested method allows one to determine the thermodynamic characteristics of compounds and surface contaminants adsorbed on surfaces, as well as surface layers, to determine the composition of volatile and non-volatile contaminants on the surface, and to determine the nature of the distribution over the surface of these compounds. The method allows to obtain the most complete information about the surface condition and can be used to predict the life of structural materials.


Sign in / Sign up

Export Citation Format

Share Document