Anisotropic turbulent flow model effect on the prediction of the erosion rate of the micro particulate flow in the elbow

Author(s):  
Sina Bahmani ◽  
Hamid Reza Nazif
1977 ◽  
Vol 8 (4) ◽  
pp. 249-256 ◽  
Author(s):  
Mohammad Akram Gill

In the differential equation of the overland turbulent flow which was first postulated by Horton, Eq.(6), the value of c equals 5/3. For this value of c, the flow equation could not be integrated algebraically. Horton solved the equation for c = 2 and believed that his solution was valid for mixed flow. The flow equation with c = 5/3 is solved algebraically herein. It is shown elsewhere (Gill 1976) that the flow equation can indeed be integrated for any rational value of c.


2012 ◽  
Vol 214 ◽  
pp. 76-81
Author(s):  
Lu Tang ◽  
Yi Ping Lu ◽  
Hai Yan Deng ◽  
Zuo Min Wang

The flow in air-gap of turbo-generator was simplified to the rotating flow model in the 2D concentric cylinder annular space. According to the CFD principle, the rotating flow model equations of the laminar flow and the turbulent flow were solved with Finite Volume Method. After being compared with the analytical solution of the 2D concentric cylinder Couette shear flow, the 2D air-gap model, the boundary conditions and the calculation results were proved to be accurate. On the basis of the study of the velocity field, the energy equation and the radiation equation were added to study the temperature field in the annular space. The convection and the radiation heat transfer were considered under the first boundary conditions. The turbulent flow and temperature distribution of the annular space under the steady-state were analyzed


1979 ◽  
Vol 101 (3) ◽  
pp. 391-396 ◽  
Author(s):  
F. W. Staub

In gas fluidized beds of large particles, a change in flow regime from bubbling flow to turbulent flow has been observed as the superficial gas velocity is increased. Solids flow and heat transfer models based on the bubbling flow regime are not generally adequate in the turbulent flow regime. A turbulent flow model is given here that is supported by limited solids flow measurements. A simplified model of the heat transfer to tube banks immersed in fluidized beds, that employs the solids flow model, is also given and is shown to be supported by data over a wide gas pressure and temperature range with particles in the 350μm to 2600μm size range.


2017 ◽  
Vol 22 (6) ◽  
pp. 765-784 ◽  
Author(s):  
Taoli Wang ◽  
◽  
Guotao Wang ◽  
Xiao-Jun Yang ◽  
◽  
...  

1984 ◽  
Vol 1 (19) ◽  
pp. 114 ◽  
Author(s):  
W. Leeuwenstein ◽  
H.G. Wind

Obstructions located in coastal and offshore waters usually disturb the natural flow pattern. This disturbed flow will, in general, cause local morphological changes in the position of the erodable boundary. Often these changes should not be allowed to exceed certain limits, for example, when local scour around an offshore construction may endanger foundations. Local morphological changes result from changes in the local sediment balance, brought about by the flow disturbance. In the present paper a mathematical model is described which gives the bottom shear stresses and the configuration of the seabed around an obstruction using a computation of the two dimensional turbulent flow field. The obstruction considered is a submarine pipeline laid uncovered on a seabed consisting of non-cohesive sediment. A research project on the local scour near submarine pipelines is being carried out at the Delft University of Technology. Part of the project is the application and extension of an advanced numerical flow model for scour development near pipelines on the seabed exposed to current action. This work is being carried out in cooperation with the Delft Hydraulics Laboratory. The code of the flow model has been developed in a joint venture between the Delft Hydraulics Laboratory and the Laboratoire National d"Hydraulique in France. The turbulent flow field is computed taking into account the influence of turbulence generated at the bed and by the pipe. The bed shear stresses are assumed to play the key role in the interaction between the flow and the seabed. In the computer model the bed shear is related to the flow through the "law of the wall". The model operation is schematized in the diagram below in which the first loop represents the evolution of the velocity field through a series of hydraulic time steps. After the velocity field is stabilized, in the second loop one morphological time step can be used for the computation of the local seabed changes. In this second loop the computed bed shear is applied together with a sediment transport formula. After the morphological time step a new bed topography is obtained and a new grid is generated for the next flow computation.


2011 ◽  
Vol 37 (9) ◽  
pp. 1099-1108 ◽  
Author(s):  
Xin Chen ◽  
Yong Li ◽  
Xiaojing Niu ◽  
Ming Li ◽  
Daoyi Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document