Chondrocyte morphology as an indicator of collagen network integrity

2021 ◽  
pp. 1-10
Author(s):  
Ziad Abusara ◽  
Ifaz Haider ◽  
Eng Kuan Moo ◽  
Sue Miller ◽  
Scott Timmermann ◽  
...  
Keyword(s):  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
B. Buchmann ◽  
L. K. Engelbrecht ◽  
P. Fernandez ◽  
F. P. Hutterer ◽  
M. K. Raich ◽  
...  

AbstractEpithelial branch elongation is a central developmental process during branching morphogenesis in diverse organs. This fundamental growth process into large arborized epithelial networks is accompanied by structural reorganization of the surrounding extracellular matrix (ECM), well beyond its mechanical linear response regime. Here, we report that epithelial ductal elongation within human mammary organoid branches relies on the non-linear and plastic mechanical response of the surrounding collagen. Specifically, we demonstrate that collective back-and-forth motion of cells within the branches generates tension that is strong enough to induce a plastic reorganization of the surrounding collagen network which results in the formation of mechanically stable collagen cages. Such matrix encasing in turn directs further tension generation, branch outgrowth and plastic deformation of the matrix. The identified mechanical tension equilibrium sets a framework to understand how mechanical cues can direct ductal branch elongation.


2006 ◽  
Vol 14 ◽  
pp. S35
Author(s):  
Y.M. Jenniskens ◽  
W. Koevoet ◽  
A.C. De Bart ◽  
J.A. Verhaar ◽  
H. Weinans ◽  
...  

2007 ◽  
Vol 7 (4) ◽  
pp. 263-276 ◽  
Author(s):  
Anna Asanbaeva ◽  
Koichi Masuda ◽  
Eugene J-M. A. Thonar ◽  
Stephen M. Klisch ◽  
Robert L. Sah

2010 ◽  
Vol 285 (53) ◽  
pp. 41874-41885 ◽  
Author(s):  
Valerie LeBleu ◽  
Malin Sund ◽  
Hikaru Sugimoto ◽  
Gabriel Birrane ◽  
Keizo Kanasaki ◽  
...  

2009 ◽  
Vol 185 (1) ◽  
pp. 11-19 ◽  
Author(s):  
Farideh Sabeh ◽  
Ryoko Shimizu-Hirota ◽  
Stephen J. Weiss

Tissue invasion during metastasis requires cancer cells to negotiate a stromal environment dominated by cross-linked networks of type I collagen. Although cancer cells are known to use proteinases to sever collagen networks and thus ease their passage through these barriers, migration across extracellular matrices has also been reported to occur by protease-independent mechanisms, whereby cells squeeze through collagen-lined pores by adopting an ameboid phenotype. We investigate these alternate models of motility here and demonstrate that cancer cells have an absolute requirement for the membrane-anchored metalloproteinase MT1-MMP for invasion, and that protease-independent mechanisms of cell migration are only plausible when the collagen network is devoid of the covalent cross-links that characterize normal tissues.


2020 ◽  
Vol 115 (11) ◽  
pp. 399-408
Author(s):  
Catherine Maidment ◽  
Meekyung Ahn ◽  
Rafea Naffa ◽  
Trevor Loo ◽  
Gillian Norris

Looseness is a defect found in leather that reduces its quality by causing a wrinkly appearance in the finished product, resulting in a reduction in its value. Earlier studies on loose leather using microscopy and Raman spectroscopy reported a change in the collagen structure of loose leather. In this study, proteomics was used to investigate the possible molecular causes of looseness in the raw material, the first time such a study has been carried out. Proteins extracted from two regions of raw hide using two different methods were analysed; those taken from the distal axilla, an area prone to looseness, and those taken from the backbone which is less prone to looseness. Analyses using 1DE-LC-MS/MS showed that although the overall collagen concentration was similar in both areas of the hide, the distribution of the different types of collagen differed.  Specifically, concentrations of type I collagen, and the collagen-associated proteoglycan decorin were lower in samples taken from the distal axilla, symptomatic of a collagen network with excess space seen for these samples using confocal microscopy. This study suggests a possible link between the molecular components of raw cattle hide and looseness and more importantly between the molecular components of skin and skin defects. There is therefore potential to develop biomarkers for looseness which will enable early preventative action.


Author(s):  
Martin Vielreicher ◽  
Aline Bozec ◽  
Georg Schett ◽  
Oliver Friedrich

Chronic inflammatory disease of bones and joints (e.g., rheumatoid arthritis, gout, etc.), but also acute bone injury and healing, or degenerative resorptive processes inducing osteoporosis, are associated with structural remodeling that ultimately have impact on function. For instance, bone stability is predominantly orchestrated by the structural arrangement of extracellular matrix fibrillar networks, i.e., collagen-I, -IV, elastin, and other proteins. These components may undergo distinct network density and orientation alterations that may be causative for decreased toughness, resilience and load bearing capacity or even increased brittleness. Diagnostic approaches are usually confined to coarse imaging modalities of X-ray or computer tomography that only provide limited optical resolution and lack specificity to visualize the fibrillary collagen network. However, studying collagen structure at the microscopic scale is of considerable interest to understand the mechanisms of tissue pathologies. Multiphoton Second Harmonic Generation (SHG) microscopy, is able to visualize the sterical topology of the collagen-I fibrillar network in 3D, in a minimally invasive and label-free manner. Penetration depths exceed those of conventional visible light imaging and can be further optimized through employing decalcification or optical clearing processing ex vivo. The goal of this proof-of-concept study was to use SHG and two-photon excited fluorescence (2-PEF) imaging to mainly characterize the fibrillary collagen organization within ex vivo decalcified normal mouse metatarsus bone and joint. The results show that the technique resolved the fibrillar collagen network of complete bones and joints with almost no artifacts and enabled to study the complex collagen-I networks with various fiber types (straight, crimped) and network arrangements of mature and woven bone with high degree of detail. Our imaging approach enabled to identify cavities within both cortical and trabecular bone architecture as well as interfaces with sharply changing fiber morphology and network structure both within bone, in tendon and ligament and within joint areas. These possibilities are highly advantageous since the technology can easily be applied to animal models, e.g., of rheumatoid arthritis to study structural effects of chronic joint inflammation, and to many others and to compare to the structure of human bone.


1992 ◽  
Vol 103 (4) ◽  
pp. 1101-1110 ◽  
Author(s):  
C.A. Poole ◽  
S. Ayad ◽  
R.T. Gilbert

The pericellular microenvironment around articular cartilage chondrocytes must play a key role in regulating the interaction between the cell and its extracellular matrix. The potential contribution of type VI collagen to this interaction was investigated in this study using isolated canine tibial chondrons embedded in agarose monolayers. The immunohistochemical distribution of an anti-type VI collagen antibody was assessed in these preparations using fluorescence, peroxidase and gold particle probes in combination with light, confocal and transmission electron microscopy. Light and confocal microscopy both showed type VI collagen concentrated in the pericellular capsule and matrix around the chondrocyte with reduced staining in the tail region and the interconnecting segments between adjacent chondrons. Minimal staining was recorded in the territorial and interterritorial matrices. At higher resolution, type VI collagen appeared both as microfibrils and as amorphous deposits that accumulated at the junction of intersecting capsular fibres and microfibrils. Electron microscopy also showed type VI collagen anchored to the chondrocyte membrane at the articular pole of the pericellular capsule and tethered to the radial collagen network through the tail at the basal pole of the capsule. We suggest that type VI collagen plays a dual role in the maintenance of chondron integrity. First, it could bind to the radial collagen network and stabilise the collagens, proteoglycans and glycoproteins of the pericellular microenvironment. Secondly, specific cell surface receptors exist, which could mediate the interaction between the chondrocyte and type VI collagen, providing firm anchorage and signalling potentials between the pericellular matrix and the cell nucleus. In this way type VI collagen could provide a close functional interrelationship between the chondrocyte, its pericellular microenvironment and the load bearing extracellular matrix of adult articular cartilage.


2007 ◽  
Vol 6 (4) ◽  
pp. 270-271
Author(s):  
Alejandra B. Quintana ◽  
Joaquín V. Rodríguez ◽  
Edgardo E. Guibert

Sign in / Sign up

Export Citation Format

Share Document