Analysis of critical slag entrapment speed at the steel–slag interface

2020 ◽  
pp. 1-8
Author(s):  
Huajie Wu ◽  
Yinghui Liu ◽  
Yue Sun ◽  
Fangjie Jiang ◽  
Qiaoqi Li ◽  
...  
Keyword(s):  
2012 ◽  
Vol 524-527 ◽  
pp. 2037-2043
Author(s):  
Qi Chun Peng ◽  
Xue Sen Yu ◽  
Wei Xiong ◽  
Liu Yang ◽  
Liang Zhou Zhang ◽  
...  

By means of Oxygen and Nitrogen Analyzer, Metallographic Examination, SLIME, SEM, EDS, etc, the cleanliness of ultra-low carbon steel first slab produced by LD-RH-CC, and the comparative analysis with the cleanliness of normal slab is studied. The results show that T[O] and [N] are obviously decreasing with the increasing of casting length. The micro-inclusions and large-inclusions are generally decreasing with the increasing of casting length. The micro-inclusions of the first slab are mainly from deoxidization products and reoxidation of liquid steel. And the sources of large-sized inclusions mainly are reoxidation of liquid steel, slag entrapment in mould or tundish and stuffing sand. The cleanliness of ultra-low carbon steel first slab is closed to those normal slabs at the length of 3.5m.


Author(s):  
Dali You ◽  
Christian Bernhard ◽  
Peter Mayer ◽  
Josef Fasching ◽  
Gerald Kloesch ◽  
...  

AbstractA tapping process model of the steel from the basic oxygen furnace (BOF) addressing the reactions in the ladle is proposed. In the model, the effective equilibrium reaction zone (EERZ) method is applied to describe the steel/slag interfacial reaction. The equilibrium reactions in the bulk steel (steel/inclusion/lining wear) and slag (liquid slag/slag additions/lining wear) are considered. The thermodynamic library—ChemApp is used to perform thermodynamic calculation. The process model includes most of the actions during the tapping process, such as the additions of ferroalloys and slag formers, carryover slag entrapment and air pick-up. After the calibration by the industrial measurements of two plants, the model is applied to study the influence of the amount of carryover slag.


2016 ◽  
Vol 24 (1) ◽  
pp. 39-46
Author(s):  
Winarna Winarna ◽  
Iput Pradiko ◽  
Muhdan Syarovy ◽  
Fandi Hidayat

Development of oil palm plantation on peatland was faced with hydrophobicity problem caused by over drained. Hydrophobicity could reduce water retention and nutrient availability in the peat soil. Beside of proper water management application, addition of soil ameliorant which contain iron could increase stability and improve peat soil fertility. The study was conducted to obtain the effect of steel slag on peat soil properties and hydrophobicity. In this study, peat soil was incorporated with steel slag and incubated in 60 days period. The research was employed completely randomized design (CRD) factorial 2 x 2 x 4. First factor is peat maturity consists of two levels: sapric (S) and hemic (H), while the second factor is soil moisture which also consist of two levels: field capacity (W1) and dry (under the critical water content) (W2). The third factor is steel slag dosage which consist of four levels: 0 g pot (TB0), 7.17 g pot (TB1), 14.81 g -1 -1 pot (TB2), and 22.44 g pot (TB3). The result showed that application of steel slag significantly increase of soil pH, ash content, and water retention at pF 4.2. Furthermore, application of steel slag significantly reduce time for water reabsorption (wettability) in sapric. On the other hand, there are negative corellation between water penetration and soil pH, ash content, and water retention at pF 4.2. Overall, application of steel slag could increase wettability and prevent peat soil hydrophobicity.


2021 ◽  
Vol 14 ◽  
pp. e00534
Author(s):  
Khaled E. Hassan ◽  
Mohamed I.E. Attia ◽  
Murray Reid ◽  
Mohammed B.S. Al-Kuwari

Author(s):  
Edwin M. Foekema ◽  
Jacqueline E. Tamis ◽  
Ainhoa Blanco ◽  
Babeth Weide ◽  
Cor Sonneveld ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 869
Author(s):  
Minghua Wei ◽  
Shaopeng Wu ◽  
Haiqin Xu ◽  
Hechuan Li ◽  
Chao Yang

Steel slag is the by-product of the steelmaking industry, the negative influences of which prompt more investigation into the recycling methods of steel slag. The purpose of this study is to characterize steel slag filler and study its feasibility of replacing limestone filler in asphalt concrete by evaluating the resistance of asphalt mastic under various aging methods. Firstly, steel slag filler, limestone filler, virgin asphalt, steel slag filler asphalt mastic and limestone filler asphalt mastic were prepared. Subsequently, particle size distribution, surface characterization and pore characterization of the fillers were evaluated. Finally, rheological property, self-healing property and chemical functional groups of the asphalt mastics with various aging methods were tested via dynamic shear rheometer and Fourier transform infrared spectrometer. The results show that there are similar particle size distributions, however, different surface characterization and pore characterization in the fillers. The analysis to asphalt mastics demonstrates how the addition of steel slag filler contributes to the resistance of asphalt mastic under the environment of acid and alkaline but is harmful under UV radiation especially. In addition, the pore structure in steel slag filler should be a potential explanation for the changing resistance of the asphalt mastics. In conclusion, steel slag filler is suggested to replace limestone filler under the environment of acid and alkaline, and environmental factor should be taken into consideration when steel slag filler is applied to replace natural fillers in asphalt mastic.


Sign in / Sign up

Export Citation Format

Share Document