Experiments on Horizontal Water Particle Velocity at Water Surface of Near Breaking Waves

1971 ◽  
Vol 14 (1) ◽  
pp. 15-24 ◽  
Author(s):  
Yuichi Iwagaki ◽  
Tetsuo Sakai ◽  
Junichi Kainuma ◽  
Takeshi Kawashima
1976 ◽  
Vol 1 (15) ◽  
pp. 25 ◽  
Author(s):  
Edward B. Thornton ◽  
James J. Galvin ◽  
Frank L. Bub ◽  
David P. Richardson

The sight and sound of breaking waves and surf is so familiar and enjoyable that we tend to forget how little we really understand about them. Why is it, that compared to other branches of wave studies our knowledge of breaking waves is so empirical and inexact? The reason must lie partly in the difficulty of finding a precise mathematical description of a fluid flow that is in general nonlinear and time-dependent. The fluid accelerations can no longer be assumed t o be small compared t o gravity, as in Stokes's theory for periodic waves and the theory of cnoidal waves in shallow water, nor is the particle velocity any longer small compared to the phase velocity. The aim of this paper is to bring together s ome recent contributions to the calculation both of steep symmetric waves and of time-dependent surface waves. These have a bearing on the behaviour of whitecaps in deep water and of surf in the breaker zone . Since spilling breakers in gently shoaling water closely resemble solitary waves, we begin with the description of solitary waves of limiting amplitude, then discuss steep waves of arbitrary height. The observed intermittency of whitecaps is discussed in terms of the energy maximum, as a function of wave steepness, In Sections 6 and 7 a simpler description of steady symmetric waves is proposed, using an asymptotic expression for the flow near the wave crest. Finally we describe a new numerical technique (MEL, or mixed Eulerian-Lagrangian) with which it has been found possible to follow the development of periodic waves past the point when overturning takes place. Measurement of waves, and vertical and horizontal water particle velocities were made of spilling, plunging and surging breakers at sandy beaches in the vicinity of Monterey, California. The measured breaking waves, derived characteristically from swell-type waves, can be described as highly nonlinear. Spectra and cross spectra were calculated between waves and velocities. Secondary waves were noted visually and by the strong harmonics in the spectra. The strength of the harmonics is related to the beach steepness, wave height and period. The phase difference between waves and horizontal velocities indicates the unstable crest of the wave leads the velocities on the average by 5-20 degrees. Phase measurements between wave gauges in a line perpendicular to the shore show breaking waves to be frequency nondispersive indicating phase-coupling of the various wave components. The coherence squared values between the sea surface elevation and the horizontal water particle velocity were high in all runs, ranging above 0.8 at the peak of the spectra. The high coherence suggests that most of the motion in the body of breaking waves is wave-induced and not turbulent.


Author(s):  
Marios Christou ◽  
Chris Swan ◽  
Ove T. Gudmestad

This paper concerns the numerical description of breaking waves and the resulting water particle kinematics. A fully non-linear multiple flux Boundary Element Method (BEM), developed by Hague & Swan [1], is applied to simulate the extreme nature of overturning waves. This BEM differs from traditional boundary integral approaches in that smoothing is not required and that neither re-gridding nor the redistribution of nodes is performed at any stage during the simulation. Plunging breakers resulting from two types of waves are examined. The first kind is produced by solitary waves propagating up an impermeable plane slope. The second concentrates on a realistic (JONSWAP) sea state spectrum to produce an overturning unidirectional irregular wave group in deep water. The water surface profiles and the resulting water particle kinematics produced by the two types of waves are analysed both qualitatively and quantitatively. Furthermore, the numerical description of the solitary wave is compared to new laboratory observations of the water surface elevation and the validity of existing breaking criteria examined. The practical implications of the findings on extreme wave loading are then addressed.


1974 ◽  
Vol 1 (14) ◽  
pp. 104 ◽  
Author(s):  
Norbert L. Ackerman ◽  
Ping-Ho Chen

Experiments were conducted in a vacuum tank in order to investigate the effect which entrained air has on impact loads which are produced when waves break upon a structure. In these experiments a flat plate was dropped onto a still water surface in an environment where the ambient pressure of the surrounding air could be controlled. Rings of varying height were fixed to the surface of the falling plate in order to trap different volumes of air between the falling plate and the water, Experimentally determined values were obtained of the maximum pressure pmax when the plate struck the water surface for various ring heights 6 and ambient pressures p0 in the vacuum tank. Experimental results indicate that the pressure rise or shock pressure Ps ~ (Pmax~Po) decreased with reductions in the ambient pressure and volume of entrapped air. Even when air was removed such that the absolute pressure in the tank was equal to the vapor pressure of the water, water hammer conditions, where the peak pressures depend upon the celerity of sound waves in the media, were never found to occur.


Author(s):  
Rioko Hirota ◽  
Takaaki Shigematsu ◽  
Kenji Katoh ◽  
Tatsuro Wakimoto ◽  
Shinya Yoshioka

With the increasing demand for renewable energy in the world, research contributing to the improvement of the technology level of wave power generation is essential. The authors have been developed a wave power generation system using port facilities in inner bays with high energy-consuming cities. In this study, the relationship between the rotational characteristics of a Savonius water turbine and the water particle velocity was quantitatively evaluated under the calm conditions of the inner bay, such as wave motion, flow, and coexistence of wave and current. According to the experimental results, it is found that the relationship between the rotational circumferential speed and the water particle velocity of the water turbine installed in a wave field tends to be different from that in a flow field and is evaluated by different equations. In addition, the relationship between circumferential velocity and the water particle velocity has also been formulated when installed in a wave-current coexistence field.Recorded Presentation from the vICCE (YouTube Link): https://youtu.be/KX0XBFuao48


1980 ◽  
Vol 23 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Masaru Mizuguchi ◽  
Masahiko Isobe ◽  
Shintaro Hotta ◽  
Kiyoshi Horikawa

1986 ◽  
Vol 1 (20) ◽  
pp. 54 ◽  
Author(s):  
T. Sakai ◽  
T. Mizutani ◽  
H. Tanaka ◽  
Y. Tada

By a flow visualization of a plunging breaker on 1/20 slope beach in a wave tank, an existence of 2nd and 3rd horizontal vortices(Miller, 1976) and slanting vortex (Nadaoka et al., 1986) is confirmed. A MAC method is applied to simulate a violent motion after an impinging of a jet from a crest of a plunging breaker on the trough surface. The calculated maximum water particle velocity in the jet is found to reach three times the linear long wave celerity. Values of circulation of the first four horizontal vortices are calculated and their changes in time are discussed.


2013 ◽  
Vol 734 ◽  
pp. 198-218 ◽  
Author(s):  
N. E. Pizzo ◽  
W. Kendall Melville

AbstractThe connection between wave dissipation by breaking deep-water surface gravity waves and the resulting turbulence and mixing is crucial for an improved understanding of air–sea interaction processes. Starting with the ensemble-averaged Euler equations, governing the evolution of the mean flow, we model the forcing, associated with the breaking-induced Reynolds shear stresses, as a body force describing the bulk scale effects of a breaking deep-water surface gravity wave on the water column. From this, we derive an equation describing the generation of circulation, $\Gamma $, of the ensemble-average velocity field, due to the body force. By examining the relationship between a breaking wave and an impulsively forced fluid, we propose a functional form for the body force, allowing us to build upon the classical work on vortex ring phenomena to both quantify the circulation generated by a breaking wave and describe the vortex structure of the induced motion. Using scaling arguments, we show that $\Gamma = \alpha {(hk)}^{3/ 2} {c}^{3} / g$, where ($c, h, k$) represent a characteristic speed, height and wavenumber of the breaking wave, respectively, $g$ is the acceleration due to gravity and $\alpha $ is a constant. This then allows us to find a direct relationship between the circulation and the wave energy dissipation rate per unit crest length due to breaking, ${\epsilon }_{l} $. Finally, we compare our model and the available experimental data.


1970 ◽  
Vol 1 (12) ◽  
pp. 19 ◽  
Author(s):  
Yuichi Iwagaki ◽  
Tetsuo Sakai

This paper firstly describes two methods to measure vertical distribution and time variation of horizontal water particle velocity induced "by surface waves in a wave tank These two methods consist of tracing hydrogen bubbles and using hot film anemometers, respectively Secondly, the experimental results by the two methods are presented with the theoretical curves derived from the small amplitude wave theory, Stokes wave theory of 3rd order, and the hyperbolic wave theory as an approximate expression of the cnoidal wave theory Finally, based on the comparison of the experimental data with the theoretical curves, the applicability of the finite amplitude wave theories, which has been studied for the wave profile, wave velocity, wave length and wave crest height, is discussed from view point of the water particle velocity.


Sign in / Sign up

Export Citation Format

Share Document