scholarly journals Survival, oxidative stability, and surface characteristics of spray dried co-microcapsules containing omega-3 fatty acids and probiotic bacteria

2016 ◽  
Vol 34 (16) ◽  
pp. 1926-1935 ◽  
Author(s):  
Divya Eratte ◽  
Thomas R. Gengenbach ◽  
Kim Dowling ◽  
Colin J. Barrow ◽  
Benu Adhikari
Antioxidants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1272
Author(s):  
Denisse Cáceres ◽  
Begoña Giménez ◽  
Gloria Márquez-Ruiz ◽  
Francisca Holgado ◽  
Cristina Vergara ◽  
...  

Purified walnut oil (PWO) microparticles with Capsul® (C, encapsulating agent), sodium alginate (SA) as outer layer and ascorbic acid (AA) as oxygen scavenger were obtained by spray drying using a three-fluid nozzle. AA was incorporated in the inner infeed (PWO-C(AA)/SA), in the outer infeed (PWO-C/SA(AA)) and in both infeed (PWO-C(AA)/SA(AA)). PWO-C(AA)/SA (4.56 h) and POW-C(AA)/SA(AA) (2.60 h) microparticles showed higher induction period than POW-C/SA(AA) (1.17 h), and lower formation of triacylglycerol dimers and polymers during storage (40 °C). Therefore, AA located in the inner infeed improved the oxidative stability of encapsulated PWO by removing the residual oxygen. AA in the SA outer layer did not improve the oxidative stability of encapsulated PWO since oxygen diffusion through the microparticles was limited and/or AA weakened the SA layer structure. The specific-location of AA (inner infeed) is a strategy to obtain stable spray-dried polyunsaturated oil-based microparticles for the design of foods enriched with omega-3 fatty acids.


2015 ◽  
Vol 19 ◽  
pp. 882-892 ◽  
Author(s):  
Divya Eratte ◽  
Stafford McKnight ◽  
Thomas R. Gengenbach ◽  
Kim Dowling ◽  
Colin J. Barrow ◽  
...  

Author(s):  
Eric A. Decker ◽  
D. Julian McClements ◽  
Jennifer R. Mancuso ◽  
Larry Tong ◽  
Longyuan Mei ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Muhammad Zia Shahid ◽  
Muhammad Imran ◽  
Muhammad Kamran Khan ◽  
Muhammad Haseeb Ahmad ◽  
Muhammad Nadeem ◽  
...  

Flaxseed is naturally a rich source of essential omega-3 fatty acid, α-linolenic acid (ALA), which exhibits nearly 57% of its entire fatty acid profile. Oxidation of omega-3 fatty acids during processing and storage results in reduced shelf stability of food products and limited health potentials. Spray-drying is considered a processing technique to shield omega-3 fatty acids from oxidative damage. For the purpose, the extracted flaxseed oil (FSO) together with the emulsifier (flaxseed meal polysaccharide gum) was passed through a mini spray-dryer to prepare spray-dried flaxseed oil (SDFSO) samples. The SDFSO samples for quality were evaluated at 0th, 30th, and 60th days of storage at two different temperatures of 4°C and 25°C, accordingly. The maximum oil protection efficiency was recorded as 90.78% at 160°C. The highest percentage for ALA retention was recorded as 54.7% and 53.9% at 4°C, while the lowest retention was observed as 48.6% and 46.2% at 25°C after 30 and 60 days of storage, respectively. The inlet (160°C) and outlet air temperatures (80°C) were considered as key factors contributing a decline in retention of ALA of the SDFSO samples. The free fatty acid contents of FSO and SDFSO samples reached to their peaks, i.e., 1.22% and 0.75%, respectively, after 60 days of storage at 25°C. The initial peroxide value of FSO (control) was 0.16, which increased to 0.34 (4°C) and 1.10 (25°C) meq/kg O2 at the end of 60 days storage. The value for malondialdehyde of SDFSO samples was increased from 0.17 (0 day) to 0.34 nmol/g of lipids at 60 days (4°C), and the same increasing trend was observed at 25°C. In the case of color and overall acceptability, the lowest evaluation scores were awarded to FSO samples in comparison to SDFSO samples. Overall, SDFSO possessed improved oxidative quality and can be recommended as a fortifying agent in various functional food products.


2020 ◽  
Vol 309 ◽  
pp. 125586
Author(s):  
Tayse Ferreira Ferreira da Silveira ◽  
Letícia Maeda Cajaíba ◽  
Leonardo Valentin ◽  
Bruno Baréa ◽  
Pierre Villeneuve ◽  
...  

Author(s):  
Hadeer Zakaria ◽  
Tarek M. Mostafa ◽  
Gamal A. El-Azab ◽  
Nagy AH Sayed-Ahmed

Abstract. Background: Elevated homocysteine levels and malnutrition are frequently detected in hemodialysis patients and are believed to exacerbate cardiovascular comorbidities. Omega-3 fatty acids have been postulated to lower homocysteine levels by up-regulating metabolic enzymes and improving substrate availability for homocysteine degradation. Additionally, it has been suggested that prevention of folate depletion by vitamin E consumption decreases homocysteine levels. However, data on the effect of omega-3 fatty acids and/or vitamin E on homocysteine levels and nutritional status have been inconclusive. Therefore, this study was planned to examine the effect of combined supplementation of fish oil, as a source of omega-3 fatty acids, with wheat germ oil, as a source of vitamin E, on homocysteine and nutritional indices in hemodialysis patients. Methods: This study was a randomized, double-blind, placebo-controlled trial. Forty-six hemodialysis patients were randomly assigned to two equally-sized groups; a supplemented group who received 3000 mg/day of fish oil [1053 mg omega-3 fatty acids] plus 300 mg/day of wheat germ oil [0.765 mg vitamin E], and a matched placebo group who received placebo capsules for 4 months. Serum homocysteine and different nutritional indices were measured before and after the intervention. Results: Twenty patients in each group completed the study. At the end of the study, there were no significant changes in homocysteine levels and in the nutritional indices neither in the supplemented nor in the placebo-control groups (p > 0.05). Conclusions: Fish oil and wheat germ oil combination did not produce significant effects on serum homocysteine levels and nutritional indices of hemodialysis patients.


Sign in / Sign up

Export Citation Format

Share Document