Pseudomonas spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications

2020 ◽  
Vol 40 (8) ◽  
pp. 1232-1249
Author(s):  
Songwei Wang ◽  
Jiajia Cui ◽  
Muhammad Bilal ◽  
Hongbo Hu ◽  
Wei Wang ◽  
...  
2020 ◽  
Author(s):  
S. Mohan ◽  
L. Chithra ◽  
R. Nageswari ◽  
V. Manimozhi Selvi ◽  
M. Mathialagan

Sugarcane is one of the major cash crops, used for the production of sugar and ethanol. Sugarcane processing, results in many by by-products like bagasse, molasses and press mud which have economic value. Also, the by-products serve to generate many value added products. Sugarcane wax is a value added product obtained by the processing of press mud. It has pharmaceutical, agricultural and industrial applications. n-Triacontanol, Policosanol, D-003 acids and waxes are some of the products derived from the sugarcane wax. This article attempt discusses the various methods of extraction of sugarcane wax, its constituents and its characteristics and applications of the products derived from the sugarcane wax.


Author(s):  
Lakshika Dissanayake ◽  
Lahiru N. Jayakody

Polyethylene terephthalate (PET) is globally the largest produced aromatic polyester with an annual production exceeding 50 million metric tons. PET can be mechanically and chemically recycled; however, the extra costs in chemical recycling are not justified when converting PET back to the original polymer, which leads to less than 30% of PET produced annually to be recycled. Hence, waste PET massively contributes to plastic pollution and damaging the terrestrial and aquatic ecosystems. The global energy and environmental concerns with PET highlight a clear need for technologies in PET “upcycling,” the creation of higher-value products from reclaimed PET. Several microbes that degrade PET and corresponding PET hydrolase enzymes have been successfully identified. The characterization and engineering of these enzymes to selectively depolymerize PET into original monomers such as terephthalic acid and ethylene glycol have been successful. Synthetic microbiology and metabolic engineering approaches enable the development of efficient microbial cell factories to convert PET-derived monomers into value-added products. In this mini-review, we present the recent progress of engineering microbes to produce higher-value chemical building blocks from waste PET using a wholly biological and a hybrid chemocatalytic–biological strategy. We also highlight the potent metabolic pathways to bio-upcycle PET into high-value biotransformed molecules. The new synthetic microbes will help establish the circular materials economy, alleviate the adverse energy and environmental impacts of PET, and provide market incentives for PET reclamation.


2013 ◽  
Vol 9 ◽  
pp. 2233-2241 ◽  
Author(s):  
Verena Weidmann ◽  
Mathias Schaffrath ◽  
Holger Zorn ◽  
Julia Rehbein ◽  
Wolfgang Maison

Allylic oxidations of olefins to enones allow the efficient synthesis of value-added products from simple olefinic precursors like terpenes or terpenoids. Biocatalytic variants have a large potential for industrial applications, particularly in the pharmaceutical and food industry. Herein we report efficient biocatalytic allylic oxidations of spirocyclic terpenoids by a lyophilisate of the edible fungus Pleurotus sapidus. This ‘’mushroom catalysis’’ is operationally simple and allows the conversion of various unsaturated spirocyclic terpenoids. A number of new spirocyclic enones have thus been obtained with good regio- and chemoselectivity and chiral separation protocols for enantiomeric mixtures have been developed. The oxidations follow a radical mechanism and the regioselectivity of the reaction is mainly determined by bond-dissociation energies of the available allylic CH-bonds and steric accessibility of the oxidation site.


2021 ◽  
Vol 7 (6) ◽  
pp. 427
Author(s):  
Harsh Kumar ◽  
Kanchan Bhardwaj ◽  
Ruchi Sharma ◽  
Eugenie Nepovimova ◽  
Natália Cruz-Martins ◽  
...  

Currently, the food and agricultural sectors are concerned about environmental problems caused by raw material waste, and they are looking for strategies to reduce the growing amount of waste disposal. Now, approaches are being explored that could increment and provide value-added products from agricultural waste to contribute to the circular economy and environmental protection. Edible mushrooms have been globally appreciated for their medicinal properties and nutritional value, but during the mushroom production process nearly one-fifth of the mushroom gets wasted. Therefore, improper disposal of mushrooms and untreated residues can cause fungal disease. The residues of edible mushrooms, being rich in sterols, vitamin D2, amino acids, and polysaccharides, among others, makes it underutilized waste. Most of the published literature has primarily focused on the isolation of bioactive components of these edible mushrooms; however, utilization of waste or edible mushrooms themselves, for the production of value-added products, has remained an overlooked area. Waste of edible mushrooms also represents a disposal problem, but they are a rich source of important compounds, owing to their nutritional and functional properties. Researchers have started exploiting edible mushroom by-products/waste for value-added goods with applications in diverse fields. Bioactive compounds obtained from edible mushrooms are being used in media production and skincare formulations. Furthermore, diverse applications from edible mushrooms are also being explored, including the synthesis of biosorbent, biochar, edible films/coating, probiotics, nanoparticles and cosmetic products. The primary intent of this review is to summarize the information related to edible mushrooms and their valorization in developing value-added products with industrial applications.


Author(s):  
Eva Donini ◽  
Andrea Firrincieli ◽  
Martina Cappelletti

AbstractRhodococcus spp. strains are widespread in diverse natural and anthropized environments thanks to their high metabolic versatility, biodegradation activities, and unique adaptation capacities to several stress conditions such as the presence of toxic compounds and environmental fluctuations. Additionally, the capability of Rhodococcus spp. strains to produce high value-added products has received considerable attention, mostly in relation to lipid accumulation. In relation with this, several works carried out omic studies and genome comparative analyses to investigate the genetic and genomic basis of these anabolic capacities, frequently in association with the bioconversion of renewable resources and low-cost substrates into triacylglycerols. This review is focused on these omic analyses and the genetic and metabolic approaches used to improve the biosynthetic and bioconversion performance of Rhodococcus. In particular, this review summarizes the works that applied heterologous expression of specific genes and adaptive laboratory evolution approaches to manipulate anabolic performance. Furthermore, recent molecular toolkits for targeted genome editing as well as genome-based metabolic models are described here as novel and promising strategies for genome-scaled rational design of Rhodococcus cells for efficient biosynthetic processes application.


2020 ◽  
Vol 3 (2) ◽  
Author(s):  
Lawrence O. Ekebafe ◽  
Linda C. Igbonazobi ◽  
Esther A. Anakhu

The valorization of rubber seed shell into useful materials for industrial applications in polymer technology is of great interest. The usefulness of this material is borne out of the ease of processing; it’s readily available at low or no cost, and less abrasive to equipment. Literature and research reports have shown that rubber seed shell has gained applications in the adhesive industry as reinforcing additive, in electrode manufacturing, as filler in polymer composites, as sorbent in the uptake of heavy metals during waste water treatments, as starting material in the production carbon materials for value added products for the industry. However, there are still outstanding prospects in the utilization of this material in various areas of polymer technology such as a lignocellulosic source for the production of biodegradable foams, polymer gels, second generation bio-plastics and biofuels, and as surfactants. This review examines the results of a retrospective and prospective study in polymer technology of the latent properties inherent in rubber seed shell with particular emphasis on its utilization in polymer technology.


BioResources ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. 3547-3568
Author(s):  
Alexey Vishtal ◽  
Andrzej Kraslawski

The primary aim of modern biorefineries is the efficient conversion of lignocellulosic materials into valuable products. Sugars and oils can be converted into valuable chemicals, but processing of lignin is still a challenge. A vast amount of lignin is incinerated to produce process steam and energy, and only a very small part is used for the production of value-added products. Technical lignins are isolated as by-streams in lignocellulosic refineries, e.g., as kraft, soda, organosolv, and hydrolysis lignins, as well as lignosulphonates. They have a modified structure and contain impurities that are dependent on the processing method. The structure and the composition of technical lignins restrict their subsequent applications. This paper reviews limiting factors in utilization of technical lignins. Four major classes of problems are identified, and approaches to overcoming these problems are suggested.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Haojie Pan ◽  
Jia Wang ◽  
Haoliang Wu ◽  
Zhongjian Li ◽  
Jiazhang Lian

Abstract Background CO2 valorization is one of the effective methods to solve current environmental and energy problems, in which microbial electrosynthesis (MES) system has proved feasible and efficient. Cupriviadus necator (Ralstonia eutropha) H16, a model chemolithoautotroph, is a microbe of choice for CO2 conversion, especially with the ability to be employed in MES due to the presence of genes encoding [NiFe]-hydrogenases and all the Calvin–Benson–Basham cycle enzymes. The CO2 valorization strategy will make sense because the required hydrogen can be produced from renewable electricity independently of fossil fuels. Main body In this review, synthetic biology toolkit for C. necator H16, including genetic engineering vectors, heterologous gene expression elements, platform strain and genome engineering, and transformation strategies, is firstly summarized. Then, the review discusses how to apply these tools to make C. necator H16 an efficient cell factory for converting CO2 to value-added products, with the examples of alcohols, fatty acids, and terpenoids. The review is concluded with the limitation of current genetic tools and perspectives on the development of more efficient and convenient methods as well as the extensive applications of C. necator H16. Conclusions Great progress has been made on genetic engineering toolkit and synthetic biology applications of C. necator H16. Nevertheless, more efforts are expected in the near future to engineer C. necator H16 as efficient cell factories for the conversion of CO2 to value-added products.


2021 ◽  
Vol 8 (4) ◽  
pp. 1529-1549
Author(s):  
Patrícia Carvalho ◽  
Carlos E. Costa ◽  
Sara L. Baptista ◽  
Lucília Domingues

Cheese whey is the major by-product of the dairy industry, and its disposal constitutes an environmental concern. The production of cheese whey has been increasing, with 190 million tonnes per year being produced nowadays. Therefore, it is emergent to consider different routes for cheese whey utilization. The great nutritional value of cheese whey turns it into an attractive substrate for biotechnological applications. Currently, cheese whey processing includes a protein fractionating step that originates the permeate, a lactose-reach stream further used for valorisation. In the last decades, yeast fermentation has brought several advances to the search for biorefinery alternatives. From the plethora of value-added products that can be obtained from cheese whey, ethanol is the most extensively explored since it is the alternative biofuel most used worldwide. Thus, this review focuses on the different strategies for ethanol production from cheese whey using yeasts as promising biological systems, including its integration in lignocellulosic biorefineries. These valorisation routes encompass the improvement of the fermentation process as well as metabolic engineering techniques for the introduction of heterologous pathways, resorting mainly to Kluyveromyces sp. and Saccharomyces cerevisiae strains. The solutions and challenges of the several strategies will be unveiled and explored in this review.


2020 ◽  
Vol 17 (7) ◽  
pp. 855-871 ◽  
Author(s):  
Bidangshri Basumatary ◽  
Biswajit Nath ◽  
Pranjal Kalita ◽  
Bipul Das ◽  
Sanjay Basumatary

Raw materials from renewable natural resources for industrial applications are in high concern in recent industrial research. Researchers invest their time in the management of waste as well as the conversion of waste to wealth. In that line, the production of biofuels including biodiesel, and value-added products from non-edible oil sources as well as from the generated waste biomasses, are in the tilt of research in recent times. Preparation of different oleochemicals such as grease, resins, soap, lubricants, etc. from vegetable oils, and utilization of seed cake as fertilizer, animal feed, medicine, etc. are encouraged as a part of the generation of waste to wealth as per today’s environment is concerned. In recent days, various reports on the production of biodiesel and other oleochemicals from non-edible oil sources are published in various scientific journals. Yellow oleander (Thevetia peruviana) is a tropical shrub which produces a toxic non-edible fruit containing a high percentage of seed oil (up to 67%), protein (30-37%) as well as other medicinally important phytochemicals. It is attracting the researchers worldwide for the production of biodiesel, various oleochemicals, medicine, animal feed, etc. In this study, biodiesel and various value-added products synthesized from Thevetia peruviana oil and cake are reviewed to generate and popularize the potential use of yellow oleander seed for various industrial applications and accordingly, for substantial growth in cultivation for commercial-scale requirements.


Sign in / Sign up

Export Citation Format

Share Document