Aeromonas hydrophila biofilm, exoprotease, and quorum sensing responses to co-cultivation with diverse foodborne pathogens and food spoilage bacteria on crab surfaces

Biofouling ◽  
2018 ◽  
Vol 34 (10) ◽  
pp. 1079-1092 ◽  
Author(s):  
Iqbal Kabir Jahid ◽  
Md. Furkanur Rahaman Mizan ◽  
Jinjong Myoung ◽  
Sang-Do Ha
2021 ◽  
pp. e919
Author(s):  
Valencia Vanessa ◽  
Diana Elizabeth Waturangi

Food spoilage and microbial contamination require  attention during the food production process since the presence of these bacteria can create problems including the formation of biofilms produced by these  bacteria. Biofilm formations are initiated through cell-to-cell communication which is called quorum sensing mechanism. Hence, inhibition of this communication  mechanism could be one of the solutions to inhibit  biofilm formation. Therefore, exploration of bioactive compounds from various sources including  hyllosphere bacteria with anti-quorum sensing inhibition activities is important. Phyllosphere bacteria are a community of bacteria found on the surface of plant leaves at a very  large population. These bacteria can produce bioactive compounds that can inhibit quorum sensing mechanism. In this study, 54 phyllosphere bacteria  isolates were tested, 8 bacterial isolates had potential effect to inhibit quorum sensing. From biofilm inhibition assay, the highest percentages were showed by  ifferent phyllosphere isolates against each pathogen. Whereas, for biofilm destruction assay, JB 8F isolate had the highest percentage of destruction biofilm activity  against biofilm formed by Bacillus cereus and  Shewanella putrefaciens. Eight isolates of phyllosphere  bacteria had the potential as quorum quencher and  anti-biofilm agents, both for inhibition and destruction of biofilm.  


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Erika Mulya ◽  
Diana Elizabeth Waturangi

Abstract Background Biofilms can form in many industries, one of them is the food industry. The formation of biofilms in this industry could cause immense economic losses and endanger public health. Biofilms formation is mainly triggered by quorum sensing. Therefore, inhibition of quorum sensing could be an innovative approach to inhibit the formation of biofilms. One way to inhibit quorum sensing is by using anti-quorum sensing compounds. Actinomycetes are a group of bacteria that is acknowledged to produce these compounds. Results There were eight crude extracts of Actinomycetes isolates that showed promising anti-quorum sensing activity against Chromobacterium violaceum. The concentration of the crude extracts was 20 mg/mL. All the crude extracts showed no antibacterial activity against food spoilage bacteria, except for crude extracts of isolate 18 PM that showed antibacterial activity against Bacillus subtilis. They also showed various antibiofilm activity, both inhibition and destruction. The highest inhibition and destruction activity sequentially was done by crude extracts of isolate 12 AC with 89.60% against Bacillus cereus and crude extracts of isolate SW03 with 93.06% against Shewanella putrefaciens. Conclusions Actinomycetes isolates that isolated from different regions in Indonesia can be used as potential candidates to overcome biofilms formed by food spoilage bacteria using their ability to produce anti-quorum sensing compounds.


2020 ◽  
pp. 128917
Author(s):  
Marie-Louise Heymich ◽  
Ulrike Friedlein ◽  
Marius Trollmann ◽  
Karin Schwaiger ◽  
Rainer A. Böckmann ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1807
Author(s):  
Elena Orlo ◽  
Chiara Russo ◽  
Roberta Nugnes ◽  
Margherita Lavorgna ◽  
Marina Isidori

The antibacterial and antioxidant activities of three methoxyphenol phytometabolites, eugenol, capsaicin, and vanillin, were determined. The in vitro antimicrobial potential was tested on three common foodborne pathogens (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus) and three food spoilage bacteria (Shewanella putrefaciens, Brochothrix thermosphacta, and Lactobacillus plantarum). The antioxidant assays were carried out for studying the free radical scavenging capacity and the anti-lipoperoxidant activity. The results showed that eugenol and capsaicin were the most active against both pathogens and spoilage bacteria. S. aureus was one of the most affected strains (median concentration of growth inhibition: IC50 eugenol = 0.75 mM; IC50 capsaicin = 0.68 mM; IC50 vanillin = 1.38 mM). All phytochemicals slightly inhibited the growth of L. plantarum. Eugenol was the most active molecule in the antioxidant assays. Only in the oxygen radical absorbing capacity (ORAC) test did vanillin show an antioxidant activity comparable to eugenol (eugenol ORAC value = 2.12 ± 0.08; vanillin ORAC value = 1.81 ± 0.19). This study, comparing the antimicrobial and antioxidant activities of three guaiacol derivatives, enhances their use in future applications as food additives for contrasting both common pathogens and spoilage bacteria and for improving the shelf life of preserved food.


Sign in / Sign up

Export Citation Format

Share Document