Effect of nickel on the impact toughness of weld metal with a low-carbon martensitic structure

1989 ◽  
Vol 3 (2) ◽  
pp. 147-149 ◽  
Author(s):  
A S Tabatchikov ◽  
T I Tabatchikova ◽  
A V Pryakhin
2018 ◽  
Vol 115 (4) ◽  
pp. 410
Author(s):  
Fengyu Song ◽  
Yanmei Li ◽  
Ping Wang ◽  
Fuxian Zhu

Three weld metals with different oxygen contents were developed. The influence of oxygen contents on the microstructure and impact toughness of weld metal was investigated through high heat input welding tests. The results showed that a large number of fine inclusions were formed and distributed randomly in the weld metal with oxygen content of 500 ppm under the heat input condition of 341 kJ/cm. Substantial cross interlocked acicular ferritic grains were induced to generate in the vicinity of the inclusions, primarily leading to the high impact toughness at low temperature for the weld metal. With the increase of oxygen content, the number of fine inclusions distributed in the weld metal increased and the grain size of intragranular acicular ferrites decreased, which enhanced the impact toughness of the weld metal. Nevertheless, a further increase of oxygen content would contribute to a great diminution of the austenitic grain size. Following that the fraction of grain boundary and the start temperature of transformation increased, which facilitated the abundant formation of pro-eutectoid ferrites and resulted in a deteriorative impact toughness of the weld metal.


2021 ◽  
Vol 1016 ◽  
pp. 42-49
Author(s):  
Kook Soo Bang ◽  
Joo Hyeon Cha ◽  
Kyu Tae Han ◽  
Hong Chul Jeong

The present work investigated the effects of Al, Si, and N content on the impact toughness of the coarse-grained heat-affected zone (CGHAZ) of Ti-containing low-carbon steel. Simulated CGHAZ of differing Al, Si, and N contents were prepared, and Charpy impact toughness was determined. The results were interpreted in terms of microstructure, especially martensite-austenite (M-A) constituent. All elements accelerated ferrite transformation in CGHAZ but at the same time increased the amount of M-A constituent, thereby deteriorating CGHAZ toughness. It is believed that Al, Si, and free N that is uncombined with Ti retard the decomposition of austenite into pearlite and increase the carbon content in the last transforming austenite, thus increasing the amount of M-A constituent. Regardless of the amount of ferrite in CGHAZ, its toughness decreased linearly with an increase of M-A constituent in this experiment, indicating that HAZ toughness is predominantly affected by the presence of M-A constituent. When a comparison of the effectiveness is made between Al and Si, it showed that a decrease in Si content is more effective in reducing M-A constituents.


2009 ◽  
Vol 79-82 ◽  
pp. 143-146
Author(s):  
Jiang Hua Ma ◽  
Dong Ping Zhan ◽  
Zhou Hua Jiang ◽  
Ji Cheng He

In order to understand the effects of deoxidizer such as aluminium, titanium and magnesium on the impact toughness of heat affected zone (HAZ), three low carbon steels deoxidized by Ti-Al, Mg and Ti-Mg were obtained. After smelting, forging, rolling and welding simulation, the effects of Al, Ti and Mg addition on the impact toughness of HAZ in low carbon steel were studied. The inclusion characteristics (size, morphology and chemistry) of samples before welding and the fracture pattern of the specimens after the Charpy-type test were respectively analyzed using optical microscope and scanning electron microscopy (SEM). The following results were found. The density of inclusion in Ti-Mg deoxidized steel is bigger than Ti-Al deoxidized steel. The average diameter is decreased for the former than the latter. The addition of Ti-Mg can enhance the impact toughness of the HAZ after welding simulation. The maximal value of the impact toughness is 66.5J/cm2. The complex particles of MgO-TiOx-SiO2-MnS are most benefit to enhance impact toughness. The improvement of HAZ is attributable to the role of particle pinning and the formation of intergranular ferrite.


2011 ◽  
Vol 391-392 ◽  
pp. 768-772 ◽  
Author(s):  
Li Yang ◽  
Zhan Zhe Zhang

The weldablity of dissimilar steel between 16MnR and S31803 was analyzed and researched. By means of optical microscope (OM), the microstructure of the weld joint was investigated, which is welded by tungsten inert gas arc backing welding (GTAW) and manual arc filling welding (SMAW). The mechanical properties and corrosion resistance of the welded joint was also tested and studied. Results indicate that austenite and acicular ferrite distribute uniformly in the weld metal, which strengths the toughness and ductility of the joint. The austenite content in weld is higher than that in over-heated zone of S31803.The SMAW joint structure is coarsening than that of GTAW and has more austenite content. It is also observed that there are a decarburization layer and a carbon-enriched zone nearby the fusion line. And very small amounts of the third phase of harmful metal phase are found in the fusion zone of S31803 side. The welded joint shows the excellent mechanical properties and corrosion resistance. The impact toughness of the weld metal is higher than in HAZ of 16MnR side, and the impact toughness at GTAW side and in HAZ is superior to the SMAW side.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1638 ◽  
Author(s):  
Shuwan Cui ◽  
Zhiyong Xian ◽  
Yonghua Shi ◽  
Baoyi Liao ◽  
Tao Zhu

In this paper, the microstructure and impact toughness of a S32101 duplex stainless steel underwater local-dry keyhole tungsten inert gas welded joint were studied. The impact toughness value of the underwater weld metal reached 78% of the onshore weld metal, which is in accordance with the underwater welding standards. The proportion of austenite in the underwater weld metal was 0.9% lower than that of the onshore weld metal. The proportion of the Σ3 coincidence site lattice boundaries and random phase boundaries in the underwater weld metal, which significantly influence the impact toughness of the weld metal, were smaller than that of the onshore weld metal.


2006 ◽  
Vol 71 (3) ◽  
pp. 313-321 ◽  
Author(s):  
Radica Prokic-Cvetkovic ◽  
Andjelka Milosavljevic ◽  
Aleksandar Sedmak ◽  
Olivera Popovic

Testing were carried out on two steels. The first was microalloyed with Nb and second with Ti, Nb and V. The impact toughness of weld metals of these steels was evaluated using an instrumented Charpy pendulum. Five different gas mixtures (Ar, CO2, O2) were used to determine the optimal gas shielded metal arc process for both steels. The oxygen equivalent was used as a representative parameter of a mixture to follow, in particularly, its effect on the microstructure, toughness and crack propagation energy of the weld metal. For these investigated steels, the optimum gas mixture was established (5%CO2, 0.91%O2, balance Ar), which provided the maximum crack propagation energy, due to the microstructure which consisted dominantly of acicular ferrite.


2017 ◽  
Vol 12 (7-8) ◽  
pp. 409-415 ◽  
Author(s):  
N. P. Aleshin ◽  
A. A. Linnik ◽  
N. V. Kobernik ◽  
R. S. Mikheev ◽  
A. S. Pankratov ◽  
...  

2018 ◽  
Vol 24 (4) ◽  
pp. 773-788 ◽  
Author(s):  
Hadi Torkamani ◽  
Shahram Raygan ◽  
Carlos Garcia Mateo ◽  
Jafar Rassizadehghani ◽  
Yahya Palizdar ◽  
...  

2018 ◽  
Vol 786 ◽  
pp. 57-64 ◽  
Author(s):  
Ahmed Hamed ◽  
Mamdouh Eissa ◽  
Abdelhakim Kandil ◽  
Omnia Ali ◽  
Taha M. Mattar

This work aims at designing and developing low carbon steel alloys to meet the high tensile strength, high ductility and high impact toughness properties. The effect of solid solution mechanism, precipitation hardening, as well as grain refinement were developed with different Manganese content (0.78-2.36wt%) combined with Vanadium(0.008-0.1wt%) and Titanium (0.002-0.072wt%) microalloying additions. The controlled thermo-mechanical treatments and chemical compositions play a big role in developing the microstructure and the corresponding mechanical properties. Therefore, the studied chemical compositions were treated thermo-mechanically by two different ways of changing start and finish forging temperatures with subsequent air cooling. The first way by start forging from 1050 to 830oC and the second from 950 to730oC. The second way of forging process developed finer grain sizes and higher ultimate tensile strengths for all the studied steel alloys. In spite of finer grain sizes, the impact toughness value was lower in the second regime due to detrimental influence of precipitation strengthening in the ferrite. A combination of 544 MPa yield strength, 615 MPa ultimate tensile strength, 20% elongation and 138 Joule impact toughness has been attained.


Sign in / Sign up

Export Citation Format

Share Document