scholarly journals Predictive analysis and survey of COVID-19 using machine learning and big data

Author(s):  
Shruti Sharma ◽  
Yogesh Kumar Gupta
Psychology ◽  
2020 ◽  
Author(s):  
Jeffrey Stanton

The term “data science” refers to an emerging field of research and practice that focuses on obtaining, processing, visualizing, analyzing, preserving, and re-using large collections of information. A related term, “big data,” has been used to refer to one of the important challenges faced by data scientists in many applied environments: the need to analyze large data sources, in certain cases using high-speed, real-time data analysis techniques. Data science encompasses much more than big data, however, as a result of many advancements in cognate fields such as computer science and statistics. Data science has also benefited from the widespread availability of inexpensive computing hardware—a development that has enabled “cloud-based” services for the storage and analysis of large data sets. The techniques and tools of data science have broad applicability in the sciences. Within the field of psychology, data science offers new opportunities for data collection and data analysis that have begun to streamline and augment efforts to investigate the brain and behavior. The tools of data science also enable new areas of research, such as computational neuroscience. As an example of the impact of data science, psychologists frequently use predictive analysis as an investigative tool to probe the relationships between a set of independent variables and one or more dependent variables. While predictive analysis has traditionally been accomplished with techniques such as multiple regression, recent developments in the area of machine learning have put new predictive tools in the hands of psychologists. These machine learning tools relax distributional assumptions and facilitate exploration of non-linear relationships among variables. These tools also enable the analysis of large data sets by opening options for parallel processing. In this article, a range of relevant areas from data science is reviewed for applicability to key research problems in psychology including large-scale data collection, exploratory data analysis, confirmatory data analysis, and visualization. This bibliography covers data mining, machine learning, deep learning, natural language processing, Bayesian data analysis, visualization, crowdsourcing, web scraping, open source software, application programming interfaces, and research resources such as journals and textbooks.


Author(s):  
Turan G. Bali ◽  
Amit Goyal ◽  
Dashan Huang ◽  
Fuwei Jiang ◽  
Quan Wen

2019 ◽  
Vol 19 (25) ◽  
pp. 2301-2317 ◽  
Author(s):  
Ruirui Liang ◽  
Jiayang Xie ◽  
Chi Zhang ◽  
Mengying Zhang ◽  
Hai Huang ◽  
...  

In recent years, the successful implementation of human genome project has made people realize that genetic, environmental and lifestyle factors should be combined together to study cancer due to the complexity and various forms of the disease. The increasing availability and growth rate of ‘big data’ derived from various omics, opens a new window for study and therapy of cancer. In this paper, we will introduce the application of machine learning methods in handling cancer big data including the use of artificial neural networks, support vector machines, ensemble learning and naïve Bayes classifiers.


Author(s):  
Muhammad Junaid ◽  
Shiraz Ali Wagan ◽  
Nawab Muhammad Faseeh Qureshi ◽  
Choon Sung Nam ◽  
Dong Ryeol Shin

Sign in / Sign up

Export Citation Format

Share Document