Syringe life and memory effects in isotopic analyses performed by liquid water isotopic analysers – a case study for natural waters from central Europe

2015 ◽  
Vol 52 (4-5) ◽  
pp. 553-559 ◽  
Author(s):  
Ladislav Holko
Author(s):  
Maria Ricciardi ◽  
Concetta Pironti ◽  
Oriana Motta ◽  
Rosa Fiorillo ◽  
Federica Camin ◽  
...  

AbstractIn this paper, we analysed the efflorescences present in the frescos of a monumental complex named S. Pietro a Corte situated in the historic centre of Salerno (Campania, Italy). The groundwater of the historic centre is fed by two important streams (the Rafastia and the Fusandola) that can be the sources of water penetration. The aims of this work are to (i) identify the stream that reaches the ancient frigidarium of S. Pietro a Corte and (ii) characterize the efflorescences on damaged frescos in terms of chemical nature and sources. In order to accomplish the first aim, the water of the Rafastia river (7 samples) and the water of the Fusandola river (7 samples) were analysed and compared with the water of a well of the Church (7 samples). The ionic chromatography measurements on the water samples allowed us to identify the Rafastia as the river that feeds the ancient frigidarium of S. Pietro a Corte. To investigate the nature and the origin of the efflorescences (our second aim), anionic chromatography analyses, X-ray diffraction measurements, and the isotopic determination of nitrogen were performed on the efflorescences (9 samples) and the salts recovered from the well (6 samples). Results of these analyses show that efflorescences are mainly made of potassium nitrate with a δ15N value of + 9.3 ± 0.2‰. Consequently, a plausible explanation for their formation could be the permeation of sewage water on the walls of the monumental complex.


Author(s):  
Luboš Střelec

This article deals with one of the important parts of applying chaos theory to financial and capital markets – namely searching for long memory effects in time series of financial instruments. Source data are daily closing prices of Central Europe stock market indices – Bratislava stock index (SAX), Budapest stock index (BUX), Prague stock index (PX) and Vienna stock index (ATX) – in the period from January 1998 to September 2007. For analysed data R/S analysis is used to calculate the Hurst exponent. On the basis of the Hurst exponent is characterized formation and behaviour of analysed financial time series. Computed Hurst exponent is also statistical compared with his expected value signalling independent process. It is also operated with 5-day returns (i.e. weekly returns) for the purposes of comparison and identification nonperiodic cycles.


2020 ◽  
pp. 1-12
Author(s):  
Shubham Choudhary ◽  
Koushik Sen ◽  
Santosh Kumar ◽  
Shruti Rana ◽  
Swakangkha Ghosh

Abstract Carbonatite melts derived from the mantle are enriched in CO2- and H2O-bearing fluids. This melt can metasomatize the peridotitic lithosphere and liberate a considerable amount of CO2. Experimental studies have also shown that a CO2–H2O-rich fluid can form Fe- and Mg-rich carbonate by reacting with olivine. The Sung Valley carbonatite of NE India is related to the Kerguelen plume and is characterized by rare occurrences of olivine. Our study shows that this olivine is resorbed forsterite of xenocrystic nature. This olivine bears inclusions of Fe-rich magnesite. Accessory apatite in the host carbonatite contains CO2–H2O fluid inclusions. Carbon and oxygen isotopic analyses indicate that the carbonatites are primary igneous carbonatites and are devoid of any alteration or fractionation. We envisage that the forsterite is a part of the lithospheric mantle that was reprecipitated in a carbonatite reservoir through dissolution–precipitation. Carbonation of this forsterite, during interaction between the lithospheric mantle and carbonatite melt, formed Fe-rich magnesite. CO2–H2O-rich fluid derived from the carbonatite magma and detected within accessory apatite caused this carbonation. Our study suggests that a significant amount of CO2 degassed from the mantle by carbonatitic magma can become entrapped in the lithosphere by forming Fe- and Mg-rich carbonates.


2007 ◽  
Vol 112 (D21) ◽  
Author(s):  
Robyn Schofield ◽  
John S. Daniel ◽  
Robert W. Portmann ◽  
H. LeRoy Miller ◽  
Susan Solomon ◽  
...  

Geomorphology ◽  
2014 ◽  
Vol 216 ◽  
pp. 58-78 ◽  
Author(s):  
Knut Kaiser ◽  
Mathias Küster ◽  
Alexander Fülling ◽  
Martin Theuerkauf ◽  
Elisabeth Dietze ◽  
...  

Resuscitation ◽  
2010 ◽  
Vol 81 (2) ◽  
pp. S105
Author(s):  
L. Duniec ◽  
J. Szymański ◽  
T. Łazowski ◽  
J. Andres
Keyword(s):  

2014 ◽  
Vol 7 (12) ◽  
pp. 4203-4221 ◽  
Author(s):  
E. Peters ◽  
F. Wittrock ◽  
A. Richter ◽  
L. M. A. Alvarado ◽  
V. V. Rozanov ◽  
...  

Abstract. Spectral effects of liquid water are present in absorption (differential optical absorption spectroscopy – DOAS) measurements above the ocean and, if insufficiently removed, may interfere with trace gas absorptions, leading to wrong results. Currently available literature cross sections of liquid water absorption are provided in coarser resolution than DOAS applications require, and vibrational Raman scattering (VRS) is mostly not considered, or is compensated for using simulated pseudo cross sections from radiative transfer modeling. During the ship-based TransBrom campaign across the western Pacific in October 2009, MAX-DOAS (Multi-AXis differential optical absorption spectroscopy) measurements of light penetrating very clear natural waters were performed, achieving average underwater light paths of up to 50 m. From these measurements, the retrieval of a correction spectrum (H2Ocorr) is presented, compensating simultaneously for insufficiencies in the liquid water absorption cross section and broad-banded VRS structures. Small-banded structures caused by VRS were found to be very efficiently compensated for by the intensity offset correction included in the DOAS fit. No interference between the H2Ocorr spectrum and phytoplankton absorption was found. In the MAX-DOAS tropospheric NO2 retrieval, this method was able to compensate entirely for all liquid water effects that decrease the fit quality, and performed better than using a liquid water cross section in combination with a simulated VRS spectrum. The decrease in the residual root mean square (rms) of the DOAS fit depends on the measurement's contamination with liquid water structures, and ranges from ≈ 30% for measurements slightly towards the water surface to several percent in small angles above the horizon. Furthermore, the H2Ocorr spectrum was found to prevent misfits of NO2 slant columns, especially for very low NO2 scenarios, and thus increases the reliability of the fit. In test fits on OMI satellite data, the H2Ocorr spectrum was found selectively above ocean surfaces, where it decreases the rms by up to ≈ 11%.


Sign in / Sign up

Export Citation Format

Share Document