scholarly journals Lattice Transformations and Subunit Conformational Changes in Phage Capsid Maturation

2005 ◽  
Vol 6 (2) ◽  
pp. 99-105 ◽  
Author(s):  
David C. Gossard ◽  
Jonathan King

A general feature of the pathways for the assembly of double-stranded DNA phages and viruses is the assembly of coat and scaffolding subunits into a precursor shell or procapsid, followed by packaging of the genomic DNA into the shell. Coupled to this DNA packaging process is the loss of the scaffolding subunits and expansion and re-organization of the procapsid lattice to the lattice of the mature virus. Such lattice transitions have also been observed with adenoviruses and herpesviruses. In re-organizing into the mature capsid lattice, each subunit of the precursor lattice must change its conformation, or its relationship with its neighbours, or both. We briefly review here recent structural data for phages P22 and HK97, and describe the motions and conformational changes associated with this lattice transition. Possible functions of such constrained transformations within the virus life-cycle are discussed.

2019 ◽  
Vol 116 (9) ◽  
pp. 3556-3561 ◽  
Author(s):  
Oliver W. Bayfield ◽  
Evgeny Klimuk ◽  
Dennis C. Winkler ◽  
Emma L. Hesketh ◽  
Maria Chechik ◽  
...  

Double-stranded DNA viruses, including bacteriophages and herpesviruses, package their genomes into preformed capsids, using ATP-driven motors. Seeking to advance structural and mechanistic understanding, we established in vitro packaging for a thermostable bacteriophage, P23-45 of Thermus thermophilus. Both the unexpanded procapsid and the expanded mature capsid can package DNA in the presence of packaging ATPase over the 20 °C to 70 °C temperature range, with optimum activity at 50 °C to 65 °C. Cryo-EM reconstructions for the mature and immature capsids at 3.7-Å and 4.4-Å resolution, respectively, reveal conformational changes during capsid expansion. Capsomer interactions in the expanded capsid are reinforced by formation of intersubunit β-sheets with N-terminal segments of auxiliary protein trimers. Unexpectedly, the capsid has T=7 quasi-symmetry, despite the P23-45 genome being twice as large as those of known T=7 phages, in which the DNA is compacted to near-crystalline density. Our data explain this anomaly, showing how the canonical HK97 fold has adapted to double the volume of the capsid, while maintaining its structural integrity. Reconstructions of the procapsid and the expanded capsid defined the structure of the single vertex containing the portal protein. Together with a 1.95-Å resolution crystal structure of the portal protein and DNA packaging assays, these reconstructions indicate that capsid expansion affects the conformation of the portal protein, while still allowing DNA to be packaged. These observations suggest a mechanism by which structural events inside the capsid can be communicated to the outside.


2021 ◽  
Vol 22 (13) ◽  
pp. 6709
Author(s):  
Xiao-Xuan Shi ◽  
Peng-Ye Wang ◽  
Hong Chen ◽  
Ping Xie

The transition between strong and weak interactions of the kinesin head with the microtubule, which is regulated by the change of the nucleotide state of the head, is indispensable for the processive motion of the kinesin molecular motor on the microtubule. Here, using all-atom molecular dynamics simulations, the interactions between the kinesin head and tubulin are studied on the basis of the available high-resolution structural data. We found that the strong interaction can induce rapid large conformational changes of the tubulin, whereas the weak interaction cannot. Furthermore, we found that the large conformational changes of the tubulin have a significant effect on the interaction of the tubulin with the head in the weak-microtubule-binding ADP state. The calculated binding energy of the ADP-bound head to the tubulin with the large conformational changes is only about half that of the tubulin without the conformational changes.


1981 ◽  
Vol 197 (1) ◽  
pp. 105-109 ◽  
Author(s):  
D R Thatcher ◽  
B Hodson

A polyacrylamide-gel-electrophoresis method has been developed that permits the analysis of conformational changes that occur during the thermal denaturation of macromolecules. A stable transverse temperature gradient was produced in an aluminium heating jacket clamped around a vertical polyacrylamide slab gel. After temperature equilibration, gels were loaded with either a layer of protein solution (20-200 micrograms/gel) or a solution of double-stranded DNA (20 micrograms/gel) and electrophoresis begun. At the end of the run the gels were stained and the effect of temperature on mobility observed. The technique proved informative both for the irreversible unfolding of proteins (Drosophila alcohol dehydrogenase and lactic acid dehydrogenase) and for a protein that was reversibly denatured by heat (beta-lactamase). In the latter case a clear transition between the native enzyme and a slower-migrating denatured state was observed. The patterns obtained were analogous to the type produced by the transverse-urea-gradient-electrophoretic method of Creighton [(1979) J. Mol. Biol. 129, 253-264]. The method also resolved a complex mixture of double-stranded-DNA restriction-digest fragments.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Giovanni Cardone ◽  
Robert L. Duda ◽  
Naiqian Cheng ◽  
Lili You ◽  
James F. Conway ◽  
...  

ABSTRACT As they mature, many capsids undergo massive conformational changes that transform their stability, reactivity, and capacity for DNA. In some cases, maturation proceeds via one or more intermediate states. These structures represent local minima in a rich energy landscape that combines contributions from subunit folding, association of subunits into capsomers, and intercapsomer interactions. We have used scanning calorimetry and cryo-electron microscopy to explore the range of capsid conformations accessible to bacteriophage HK97. To separate conformational effects from those associated with covalent cross-linking (a stabilization mechanism of HK97), a cross-link-incompetent mutant was used. The mature capsid Head I undergoes an endothermic phase transition at 60°C in which it shrinks by 7%, primarily through changes in its hexamer conformation. The transition is reversible, with a half-life of ~3 min; however, >50% of reverted capsids are severely distorted or ruptured. This observation implies that such damage is a potential hazard of large-scale structural changes such as those involved in maturation. Assuming that the risk is lower for smaller changes, this suggests a rationalization for the existence of metastable intermediates: that they serve as stepping stones that preserve capsid integrity as it switches between the radically different conformations of its precursor and mature states. IMPORTANCE Large-scale conformational changes are widespread in virus maturation and infection processes. These changes are accompanied by the release of conformational free energy as the virion (or fusogenic glycoprotein) switches from a precursor state to its mature state. Each state corresponds to a local minimum in an energy landscape. The conformational changes in capsid maturation are so radical that the question arises of how maturing capsids avoid being torn apart. Offering proof of principle, severe damage is inflicted when a bacteriophage HK97 capsid reverts from the (nonphysiological) state that it enters when heated past 60°C. We suggest that capsid proteins have been selected in part by the criterion of being able to avoid sustaining collateral damage as they mature. One way of achieving this—as with the HK97 capsid—involves breaking the overall transition down into several smaller steps in which the risk of damage is reduced.


2009 ◽  
Vol 83 (24) ◽  
pp. 12725-12737 ◽  
Author(s):  
Luella Scholtes ◽  
Joel D. Baines

ABSTRACT The UL17 and UL25 proteins (pUL17 and pUL25, respectively) of herpes simplex virus 1 are located at the external surface of capsids and are essential for DNA packaging and DNA retention in the capsid, respectively. The current studies were undertaken to determine whether DNA packaging or capsid assembly affected the pUL17/pUL25 interaction. We found that pUL17 and pUL25 coimmunoprecipitated from cells infected with wild-type virus, whereas the major capsid protein VP5 (encoded by the UL19 gene) did not coimmunoprecipitate with these proteins under stringent conditions. In addition, pUL17 (i) coimmunoprecipitated with pUL25 in the absence of other viral proteins, (ii) coimmunoprecipitated with pUL25 from lysates of infected cells in the presence or absence of VP5, (iii) did not coimmunoprecipitate efficiently with pUL25 in the absence of the triplex protein VP23 (encoded by the UL18 gene), (iv) required pUL25 for proper solubilization and localization within the viral replication compartment, (v) was essential for the sole nuclear localization of pUL25, and (vi) required capsid proteins VP5 and VP23 for nuclear localization and normal levels of immunoreactivity in an indirect immunofluorescence assay. Proper localization of pUL25 in infected cell nuclei required pUL17, pUL32, and the major capsid proteins VP5 and VP23, but not the DNA packaging protein pUL15. The data suggest that VP23 or triplexes augment the pUL17/pUL25 interaction and that VP23 and VP5 induce conformational changes in pUL17 and pUL25, exposing epitopes that are otherwise partially masked in infected cells. These conformational changes can occur in the absence of DNA packaging. The data indicate that the pUL17/pUL25 complex requires multiple viral proteins and functions for proper localization and biochemical behavior in the infected cell.


2016 ◽  
Vol 113 (33) ◽  
pp. 9351-9356 ◽  
Author(s):  
Jiří Nováček ◽  
Marta Šiborová ◽  
Martin Benešík ◽  
Roman Pantůček ◽  
Jiří Doškař ◽  
...  

Bacteriophages from the family Myoviridae use double-layered contractile tails to infect bacteria. Contraction of the tail sheath enables the tail tube to penetrate through the bacterial cell wall and serve as a channel for the transport of the phage genome into the cytoplasm. However, the mechanisms controlling the tail contraction and genome release of phages with “double-layered” baseplates were unknown. We used cryo-electron microscopy to show that the binding of the Twort-like phage phi812 to the Staphylococcus aureus cell wall requires a 210° rotation of the heterohexameric receptor-binding and tripod protein complexes within its baseplate about an axis perpendicular to the sixfold axis of the tail. This rotation reorients the receptor-binding proteins to point away from the phage head, and also results in disruption of the interaction of the tripod proteins with the tail sheath, hence triggering its contraction. However, the tail sheath contraction of Myoviridae phages is not sufficient to induce genome ejection. We show that the end of the phi812 double-stranded DNA genome is bound to one protein subunit from a connector complex that also forms an interface between the phage head and tail. The tail sheath contraction induces conformational changes of the neck and connector that result in disruption of the DNA binding. The genome penetrates into the neck, but is stopped at a bottleneck before the tail tube. A subsequent structural change of the tail tube induced by its interaction with the S. aureus cell is required for the genome’s release.


2013 ◽  
Vol 3 (5) ◽  
pp. 054003 ◽  
Author(s):  
Long Li ◽  
Jizeng Wang ◽  
Youhe Zhou
Keyword(s):  

2005 ◽  
Vol 187 (3) ◽  
pp. 1091-1104 ◽  
Author(s):  
Sherwood R. Casjens ◽  
Eddie B. Gilcrease ◽  
Danella A. Winn-Stapley ◽  
Petra Schicklmaier ◽  
Horst Schmieger ◽  
...  

ABSTRACT The generalized transducing double-stranded DNA bacteriophage ES18 has an icosahedral head and a long noncontractile tail, and it infects both rough and smooth Salmonella enterica strains. We report here the complete 46,900-bp genome nucleotide sequence and provide an analysis of the sequence. Its 79 genes and their organization clearly show that ES18 is a member of the lambda-like (lambdoid) phage group; however, it contains a novel set of genes that program assembly of the virion head. Most of its integration-excision, immunity, Nin region, and lysis genes are nearly identical to those of the short-tailed Salmonella phage P22, while other early genes are nearly identical to Escherichia coli phages λ and HK97, S. enterica phage ST64T, or a Shigella flexneri prophage. Some of the ES18 late genes are novel, while others are most closely related to phages HK97, lambda, or N15. Thus, the ES18 genome is mosaically related to other lambdoid phages, as is typical for all group members. Analysis of virion DNA showed that it is circularly permuted and about 10% terminally redundant and that initiation of DNA packaging series occurs across an approximately 1-kbp region rather than at a precise location on the genome. This supports a model in which ES18 terminase can move substantial distances along the DNA between recognition and cleavage of DNA destined to be packaged. Bioinformatic analysis of large terminase subunits shows that the different functional classes of phage-encoded terminases can usually be predicted from their amino acid sequence.


Sign in / Sign up

Export Citation Format

Share Document