Discovery of a Potential Multi-Target Anti-Tumor Agent via Structural Modification on Flavonoid

Author(s):  
Xiangping Deng ◽  
Yang Zou ◽  
Renbo Liu ◽  
Yijiao Peng ◽  
Chenglin Ouyang ◽  
...  
Author(s):  
Pham V. Huong ◽  
Stéphanie Bouchet ◽  
Jean-Claude Launay

Microstructure of epitaxial layers of doped GaAs and its crystal growth dynamics on single crystal GaAs substrate were studied by Raman microspectroscopy with a Dilor OMARS instrument equipped with a 1024 photodiode multichannel detector and a ion-argon laser Spectra-Physics emitting at 514.5 nm.The spatial resolution of this technique, less than 1 μm2, allows the recording of Raman spectra at several spots in function of thickness, from the substrate to the outer deposit, including areas around the interface (Fig.l).The high anisotropy of the LO and TO Raman bands is indicative of the orientation of the epitaxial layer as well as of the structural modification in the deposit and in the substrate at the interface.With Sn doped, the epitaxial layer also presents plasmon in Raman scattering. This fact is already very well known, but we additionally observed that its frequency increases with the thickness of the deposit. For a sample with electron density 1020 cm-3, the plasmon L+ appears at 930 and 790 cm-1 near the outer surface.


2017 ◽  
Author(s):  
Jeremy Roach ◽  
Yusuke Sasano ◽  
Cullen Schmid ◽  
Saheem Zaidi ◽  
Vsevolod Katritch ◽  
...  

Salvinorin A (SalA) is a plant metabolite that agonizes the human <i>kappa</i>-opioid receptor (κ-OR) with high affinity and high selectivity over <i>mu- </i>and <i>delta-</i>opioid receptors. Its therapeutic potential has stimulated extensive semi-synthetic studies and total synthesis campaigns. However, structural modification of SalA has been complicated by its instability, and efficient total synthesis has been frustrated by its dense, complex architecture. Treatment of strategic bonds in SalA as dynamic and dependent on structural perturbation enabled the identification of an efficient retrosynthetic pathway. Here we show that deletion of C20 simultaneously stabilizes the SalA skeleton, simplifies its synthesis and retains its high affinity and selectivity for the κ-OR. The resulting 10-step synthesis now opens the SalA scaffold to deep-seated property modification.


2018 ◽  
Vol 1 (1) ◽  
pp. 01-02

In 1969, Mutsuyuki Kochi [1, 2] developed 4-Hydroxybenzaldehyde for use as a novel anti-tumor agent without side effect and patent it. Accordingly, this medicine is capable of preventing carcinogenesis when used in sufficient quantity. To treat advanced cancers, an oncologist should start with giving the cancer patient a small dose of 4-Hydroxybenzaldehyde to avoid the possible severe hemorrhage of a tumor caused by excessive necrosis. Therefore, it has useful applications in treating lymphomas and leukemias. Consequently, those who have these diseases can receive a considerably large dose of the medicine.


2019 ◽  
Vol 23 (5) ◽  
pp. 503-516 ◽  
Author(s):  
Qiang Zhang ◽  
Xude Wang ◽  
Liyan Lv ◽  
Guangyue Su ◽  
Yuqing Zhao

Dammarane-type ginsenosides are a class of tetracyclic triterpenoids with the same dammarane skeleton. These compounds have a wide range of pharmaceutical applications for neoplasms, diabetes mellitus and other metabolic syndromes, hyperlipidemia, cardiovascular and cerebrovascular diseases, aging, neurodegenerative disease, bone disease, liver disease, kidney disease, gastrointestinal disease and other conditions. In order to develop new antineoplastic drugs, it is necessary to improve the bioactivity, solubility and bioavailability, and illuminate the mechanism of action of these compounds. A large number of ginsenosides and their derivatives have been separated from certain herbs or synthesized, and tested in various experiments, such as anti-proliferation, induction of apoptosis, cell cycle arrest and cancer-involved signaling pathways. In this review, we have summarized the progress in structural modification, shed light on the structure-activity relationship (SAR), and offered insights into biosynthesis-structural association. This review is expected to provide a preliminary guide for the modification and synthesis of ginsenosides.


2020 ◽  
Vol 23 (2) ◽  
pp. 111-118
Author(s):  
Zhiping Che ◽  
Jinming Yang ◽  
Di Sun ◽  
Yuee Tian ◽  
Shengming Liu ◽  
...  

Background: It is one of the effective ways for pesticide innovation to develop new insecticides from natural products as lead compounds. Quinine, the main alkaloid in the bark of cinchona tree as well as in plants in the same genus, is recognized as a safe and potent botanical insecticide to many insects. The structural modification of quinine into 9R-acyloxyquinine derivatives is a potential approach for the development of novel insecticides, which showed more toxicity than quinine. However, there are no reports on the insecticidal activity of 9Racyloxyquinine derivatives to control Mythimna separata. Methods: Endeavor to discover biorational natural products-based insecticides, 20 novel 9Racyloxyquinine derivatives were prepared and assessed for their insecticidal activity against M. separata in vivo by the leaf-dipping method at 1 mg/mL. Results: Among all the compounds, especially derivatives 5i, 5k and 5t exhibited the best insecticidal activity with final mortality rates of 50.0%, 57.1%, and 53.6%, respectively. Conclusion: Overall, a free 9-hydroxyl group is not a prerequisite for insecticidal activity and C9- substitution is well tolerated; modification of out-ring double-bond is acceptable, and hydrogenation of double-bond enhances insecticidal activity; Quinine ring is essential and open of it is not acceptable. These preliminary results will pave the way for further modification of quinine in the development of potential new insecticides.


2019 ◽  
Vol 19 (16) ◽  
pp. 1298-1368 ◽  
Author(s):  
Ankit Jain ◽  
Poonam Piplani

: Triazole is a valuable platform in medicinal chemistry, possessing assorted pharmacological properties, which could play a major role in the common mechanisms associated with various disorders like cancer, infections, inflammation, convulsions, oxidative stress and neurodegeneration. Structural modification of this scaffold could be helpful in the generation of new therapeutically useful agents. Although research endeavors are moving towards the growth of synthetic analogs of triazole, there is still a lot of scope to achieve drug discovery break-through in this area. Upcoming therapeutic prospective of this moiety has captured the attention of medicinal chemists to synthesize novel triazole derivatives. The authors amalgamated the chemistry, synthetic strategies and detailed pharmacological activities of the triazole nucleus in the present review. Information regarding the marketed triazole derivatives has also been incorporated. The objective of the review is to provide insights to designing and synthesizing novel triazole derivatives with advanced and unexplored pharmacological implications.


2013 ◽  
Vol 12 (24) ◽  
pp. 2810-2826 ◽  
Author(s):  
Tushar S. Basu Baul ◽  
Dhrubajyoti Dutta ◽  
Dick de Vos ◽  
Herbert Hopfl ◽  
Pooja ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document