IDENTIFICATION OF THE ISOMERIC TRANSFORMATION PRODUCT FROM 2-(DIMETHYLAMINO)ETHYL-(DIMETHYLPHOSPHORAMIDO)FLUORIDATE

2004 ◽  
Vol 179 (1) ◽  
pp. 49-53
Author(s):  
Emil Halamek ◽  
Zbyn∘k Kobliha ◽  
Richard Hrabal
Author(s):  
K.B. Reuter ◽  
D.B. Williams ◽  
J.I. Goldstein

In the Fe-Ni system, although ordered FeNi and ordered Ni3Fe are experimentally well established, direct evidence for ordered Fe3Ni is unconvincing. Little experimental data for Fe3Ni exists because diffusion is sluggish at temperatures below 400°C and because alloys containing less than 29 wt% Ni undergo a martensitic transformation at room temperature. Fe-Ni phases in iron meteorites were examined in this study because iron meteorites have cooled at slow rates of about 10°C/106 years, allowing phase transformations below 400°C to occur. One low temperature transformation product, called clear taenite 2 (CT2), was of particular interest because it contains less than 30 wtZ Ni and is not martensitic. Because CT2 is only a few microns in size, the structure and Ni content were determined through electron diffraction and x-ray microanalysis. A Philips EM400T operated at 120 kV, equipped with a Tracor Northern 2000 multichannel analyzer, was used.


Toxins ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 294
Author(s):  
Yan Zhu ◽  
Pascal Drouin ◽  
Dion Lepp ◽  
Xiu-Zhen Li ◽  
Honghui Zhu ◽  
...  

Zearalenone (ZEA) is a mycotoxin widely occurring in many agricultural commodities. In this study, a purified bacterial isolate, Bacillus sp. S62-W, obtained from one of 104 corn silage samples from various silos located in the United States, exhibited activity to transform the mycotoxin ZEA. A novel microbial transformation product, ZEA-14-phosphate, was detected, purified, and identified by HPLC, LC-MS, and NMR analyses. The isolate has been identified as belonging to the genus Bacillus according to phylogenetic analysis of the 16S rRNA gene and whole genome alignments. The isolate showed high efficacy in transforming ZEA to ZEA-14-phosphate (100% transformation within 24 h) and possessed advantages of acid tolerance (work at pH = 4.0), working under a broad range of temperatures (22–42 °C), and a capability of transforming ZEA at high concentrations (up to 200 µg/mL). In addition, 23 Bacillus strains of various species were tested for their ZEA phosphorylation activity. Thirteen of the Bacillus strains showed phosphorylation functionality at an efficacy of between 20.3% and 99.4% after 24 h incubation, suggesting the metabolism pathway is widely conserved in Bacillus spp. This study established a new transformation system for potential application of controlling ZEA although the metabolism and toxicity of ZEA-14-phosphate requires further investigation.


2017 ◽  
Vol 31 (23) ◽  
pp. 1750168 ◽  
Author(s):  
F. Cardone ◽  
G. Albertini ◽  
D. Bassani ◽  
G. Cherubini ◽  
E. Guerriero ◽  
...  

A mole of Mercury was suitably treated by ultrasound in order to generate in it the same conditions of local Lorentz invariance violation that were generated in a sonicated cylindrical bar of AISI 304 steel and that are the cause of neutron emission during the sonication. After 3 min, part of the mercury turned into a solid material which turned out to contain isotopes having a different mass (higher and lower) with respect to the isotopes already present in the initial material (mercury). These transformations in the atomic weight without gamma production above the background are brought about during Deformed Space–Time reactions. We present the results of the analyses performed on samples taken from the transformation product. The analyses have been done in two groups, the first one using five different analytical techniques: ICP-OES, XRF, ESEM-EDS, ICP-MS, INAA. In the second group of analyses, we used only two techniques: INAA and ICP-MS. The second group of analyses confirmed the occurring of the transformations in mercury.


1983 ◽  
Vol 36 (5) ◽  
pp. 608-610 ◽  
Author(s):  
NOBUFUSAS ERIZAWA ◽  
KEIKO NAKAGAWA ◽  
YOSHIO TSUJITA ◽  
AKIRA TERAHARA ◽  
HARUMITSUK UWANO

2014 ◽  
Vol 70 ◽  
pp. 203-212 ◽  
Author(s):  
Christoph Trautwein ◽  
Jean-Daniel Berset ◽  
Hendrik Wolschke ◽  
Klaus Kümmerer

Soil Research ◽  
2002 ◽  
Vol 40 (7) ◽  
pp. 1095 ◽  
Author(s):  
Guang-Guo Ying ◽  
Rai Kookana

Degradation of a new insecticide/termiticide, fipronil, in a soil was studied in the laboratory and field. Three metabolites of fipronil (desulfinyl, sulfide, and sulfone derivatives) were identified from soils after treatment. Laboratory studies showed that soil moisture content had a great effect on the degradation rate of fipronil and products formed. High soil moisture contents (>50%) favored the formation of a sulfide derivative of fipronil by reduction, whereas low soil moisture (<50%) and well-aerated conditions favored the formation of fipronil sulfone by oxidation. Microorganisms in soil accelerated the degradation of fipronil to sulfide and sulfone derivatives. The third transformation product, a desulfinyl derivative, was formed by photodecomposition of fipronil in water and on the soil surface under sunlight. The desulfinyl derivative degraded rapidly in field soils with a half-life of 41–55 days compared with an average half-life of 132 days for fipronil. The half-life of the 'total toxic component' (fipronil and its metabolites) in field soil was 188 days on average.


2015 ◽  
pp. 99-112

Bainite is an intermediate temperature transformation product of austenite. This chapter describes the conditions under which bainite is likely to form. It discusses the effects of alloying on bainitic transformation, the difference between upper and lower bainite, and the influence of solute drag on bainite formation mechanisms. It also discusses the development of ferrite-carbide bainites and their effect on toughness, hardness, and ductility.


2019 ◽  
Vol 286 ◽  
pp. 136-140 ◽  
Author(s):  
Rafał Typek ◽  
Andrzej L. Dawidowicz ◽  
Katarzyna Bernacik ◽  
Marek Stankevič

2015 ◽  
Vol 789-790 ◽  
pp. 496-502
Author(s):  
Subhamita Chakraborty ◽  
Shubhabrata Datta ◽  
Sujay Kumar Mukherjea ◽  
Partha Protim Chattopadhyay

To get the low temperature transformation product of austenite, study of cooling behavior of coil is essential. Temperature distribution profile of the hot strip coil has been determined by using finite volume method (FVM) vis-à-vis finite difference method (FDM). It has been demonstrated that FVM offer greater computational reliability in estimation of contact pressure distribution and hence the temperature distribution for curved and irregular profiles, owing to the flexibility in selection of grid geometry and discrete point position, Moreover, use of finite volume concept allows enforcing the conservation of mass, momentum and energy, leading to enhanced accuracy of prediction.


Sign in / Sign up

Export Citation Format

Share Document