The Effect of Intercropping Annual Ryegrass with Pinto Beans in Mitigating Iron Deficiency in Calcareous Soils

2010 ◽  
Vol 34 (3) ◽  
pp. 244-257 ◽  
Author(s):  
Emmanuel C. Omondi ◽  
Mike Ridenour ◽  
Cindy Ridenour ◽  
Rik Smith
HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 444f-445
Author(s):  
J.W. Gonzales ◽  
D.P. Coyne ◽  
W.W. Stroup

Iron deficiency chlorosis (FeDC) can cause significant seed yield reduction in dry beans (Phaseolus vulgaris L.) grown on high-pH calcareous soils. To determine the effects of FeDC on seed yield, and the effect of Fe-spray as a correction factor for FeDC, 22 breeding lines/cultivars were planted on high-pH (8.0), calcareous (3.2–3.5 calcium carbonate equivalent), and low-Fe (1.8–4.2 ppm DTPA) sandy clay loam Tripp soils at Mitchell and Scottsbluff in western Nebraska. A split-plot design was used with Fe treatments as main plots and breeding lines/cultivars as subplots. Three foliar sprays of Fe-EDDHA (2.4 kg·ha–1) were applied at V4, R5, and R7 dry bean growth stages, during 1996 and 1997. Leaf chlorosis was measured simultaneously by using a Minolta Chroma-meter (CIE L* a* b* color space system), a Minolta Chlorophyll-meter (chlorophyll content index), and by visual ratings (1 = normal green to 5 = severe chlorosis). In 1996 no significant Fe-spray × line interaction (P = 0.776) and Fe-spray effect (P = 0.884) on seed yield was observed. Breeding lines showed significant differences in seed yield (P = 0.0001) with WM2-96-5 being the highest-yielding line (4047 kg·ha–1). In 1997 a significant Fe spray × line interaction (P = 0.029) was observed. The cultivar Chase without Fe spray (3375 kg·ha–1), and lines WM2-96-5 (3281 kg·ha–1), WM2-96-8 (3171 kg·ha–1) with Fe spray were the highest yielding entries under those treatments. Differences in visual ratings after the third Fe spray in 1997 were significant (P = 0.004) for Fe spray × line interaction. In 1996 visual ratings were different only for breeding lines. Chlorophyll content index showed a significant Fe spray × line interaction after the second Fe spray (P = 0.022) and after the third Fe spray (P = 0.0003) in 1997.


PLoS ONE ◽  
2014 ◽  
Vol 9 (12) ◽  
pp. e115673 ◽  
Author(s):  
Emmanuel Chiwo Omondi ◽  
Andrew R. Kniss

2010 ◽  
Vol 102 (2) ◽  
pp. 492-498 ◽  
Author(s):  
T. C. Helms ◽  
R. A. Scott ◽  
W. T. Schapaugh ◽  
R. J. Goos ◽  
D. W. Franzen ◽  
...  

Author(s):  
Abdelmajid Krouma

Calcareous soils are known problematic lands for agricultural systems because of the low availability of nutrients, particularly iron (Fe). The so-called strategy I plant (e. g. Pea, Pisum sativum L.) which groups dicotyledons and monocots other than grasses, developed root membrane activities that contribute to the improvement of Fe availability. Among the functions considered to be a critical phase in iron absorption is rhizosphere acidification by H-ATPase and Fe(III) reduced by Fe(III) chelate reducctase (FeCR). In order to experimentally investigate the importance of root FeCR in Fe nutrition, its relationship with rhizosphere acidification and the genotypic differences in response to iron deficiency in pea (Pisum sativum L.), a glasshouse experiment was conducted hydroponically on four genotypes Merveille de Kelvedon (MK); Lincoln (Lin); Douce de Provence (DP) and Alexandra (Alex). Plants of each genotype were distributed into two plots, the first one received full nutrient solution (+ Fe), the second one received nutrient solution devoid of iron (- Fe). Plant growth, Fe distribution, SPAD index and root acidification and ferric chelate reductase activities were evaluated. Fe deficiency decreased plant growth and SPAD index along with the significant increase of H-ATPase and FeCR activities. Some genotypic differences were observed as follows; Alex showed high tolerance to Fe deprivation as compared to other genotypes. Important H-ATPase and FeCR activities, high Fe use efficiency and adequate membrane efficiency are the main reasons for this tolerance. These physiological parameters could be used as tools of tolerance for further breeding programs


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 527a-527
Author(s):  
H.Z. Zaiter

Iron-deficiency symptoms are observed on some genotypes of potato (Solanum tuberosum L.) grown on high-pH and calcareous soils. seven potato cultivars differing in response to iron deficiency chlorosis (FeDC) were grown on high-pH (8.1), calcareous (38% calcium carbonate equivalent in surface 20 cm) and silty clay soil in the field (Beka'a Valley, Lebanon), to determine the effects of FeDC on tuber yield of cultivars sprayed with Fe. A significant interactions between cultivars and Fe spray treatment were noted for visual FeDC ratings and tuber yield. Even though only slight FeDC was noted on some cultivars receiving no Fe spray, tuber yields were significantly increased when sprayed with Fe. Some cultivars with moderate FeDC ratings did not show a significant increase in yield when sprayed with Fe while other cultivars did. Sprayed cultivars generally produced higher tube; yields than unsprayed ones. Indicating that Fe-deficiency chlorosis in the Mediterranean region may be a serious limitation to potato tuber yield.


HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 841F-841
Author(s):  
H.M. Cortinas-Escobar ◽  
Douglas C. Scheuring ◽  
Thomas J. Gerik ◽  
J. Creighton Miller

Cowpea [Vigna unguiculata (L.) Walp.] cultivars differ in their response to iron deficiency when grown on calcareous soils. This response is influenced by environmental factors such as soil pH, soil texture, presence of bicarbonates, and temperature. The objective of this study was to determine the genetic basis for resistance to iron deficiency in cowpea. Crosses of `Texas Pinkeye Purple Hull' (resistant) and `Pinkeye Purple Hull' (susceptible) were made in the greenhouse during Spring 1994, and F2 seeds were obtained in the summer. Reciprocal crosses were made in order to test for maternal effects. Seed of the parental, F1, and F2 generations were planted near Temple, Texas, during Fall 1994. The color (greenness) of 1031 F2 plants was measured using a chlorophyll meter (Minolta SPAD-502) 35 days after planting. Chi-square analysis showed a good fit to a 3:1 ratio of susceptible: resistant plants. These results suggest simple inheritance of the response to iron deficiency in cowpea. Similar segregation of the reciprocal crosses indicated absence of maternal inheritance.


2015 ◽  
Vol 43 (1) ◽  
pp. 210-213 ◽  
Author(s):  
Sonia DEMASI ◽  
Matteo CASER ◽  
Nobuo KOBAYASHI ◽  
Yuji KURASHIGE ◽  
Valentina SCARIOT

Evergreen azaleas grow in acid soil and suffer from iron deficiency when cultivated in substrate with pH higher than 6.0. In order to select tolerant plants, 11 azalea genotypes were tested for 21 days in alkaline solution (pH 9), buffered with sodium hydrogen carbonate (1 g·l-1). Leaf damage, root length and mortality rate were recorded. While leaf damage and mortality rate allowed to discriminate genotypes, root development appeared not directly linked to iron deficiency tolerance. Rhododendron ‘Juko’, R. scabrum, R. macrosepalum ‘Hanaguruma’, R. x pulchrum ‘Oomurasaki’, and R. x pulchrum ‘Sen-e-oomurasaki’ resulted iron efficient genetic resources, useful for azalea cultivation and gardening in calcareous soils. On the contrary, R. obtusum ‘Kirin’, R. tosaense, R.x mucronatum ‘Fujimanyo’ and R. obtusum ‘Susogo-no-ito’ resulted iron deficiency sensitive genotypes. R. x mucronatum ‘Ryukyushibori’ and R. indicum ‘Kinsai’ showed intermediate responses.


2020 ◽  
Vol 21 (10) ◽  
pp. 3591
Author(s):  
Adrienne N. Moran Lauter ◽  
Lindsay Rutter ◽  
Dianne Cook ◽  
Jamie A. O’Rourke ◽  
Michelle A. Graham

Iron deficiency chlorosis (IDC) is a global crop production problem, significantly impacting yield. However, most IDC studies have focused on model species, not agronomically important crops. Soybean is the second largest crop grown in the United States, yet the calcareous soils across most of the upper U.S. Midwest limit soybean growth and profitability. To understand early soybean iron stress responses, we conducted whole genome expression analyses (RNA-sequencing) of leaf and root tissue from the iron efficient soybean (Glycine max) cultivar Clark, at 30, 60 and 120 min after transfer to iron stress conditions. We identified over 10,000 differentially expressed genes (DEGs), with the number of DEGs increasing over time in leaves, but decreasing over time in roots. To investigate these responses, we clustered our expression data across time to identify suites of genes, their biological functions, and the transcription factors (TFs) that regulate their expression. These analyses reveal the hallmarks of the soybean iron stress response (iron uptake and homeostasis, defense, and DNA replication and methylation) can be detected within 30 min. Furthermore, they suggest root to shoot signaling initiates early iron stress responses representing a novel paradigm for crop stress adaptations.


Sign in / Sign up

Export Citation Format

Share Document