Toxicogenomics of Non-viral Vectors for Gene Therapy: A Microarray Study of Lipofectin- and Oligofectamine-induced Gene Expression Changes in Human Epithelial Cells

2003 ◽  
Vol 11 (6) ◽  
pp. 311-323 ◽  
Author(s):  
Yadollah Omidi ◽  
Andrew J. Hollins ◽  
Mustapha Benboubetra ◽  
Ross Drayton ◽  
Ibrahim F. Benter ◽  
...  
1999 ◽  
Vol 380 (6) ◽  
Author(s):  
H. Büeler

AbstractAdeno-associated virus (AAV) is a defective, non-pathogenic human parvovirus that depends for growth on coinfection with a helper adenovirus or herpes virus. Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as vectors for gene therapy. In contrast to other gene delivery systems, rAAVs lack all viral genes and show long-term gene expression


2009 ◽  
Vol 27 (1) ◽  
pp. 111-119 ◽  
Author(s):  
Sung-Hwa Sohn ◽  
Jaebum Lee ◽  
Ki-Nam Kim ◽  
In kyoung Kim ◽  
Meyoung-Kon Kim

2001 ◽  
Vol 75 (10) ◽  
pp. 4792-4801 ◽  
Author(s):  
Maria A. Croyle ◽  
Narendra Chirmule ◽  
Yi Zhang ◽  
James M. Wilson

ABSTRACT Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy.


2005 ◽  
Vol 73 (4) ◽  
pp. 2327-2335 ◽  
Author(s):  
Yumiko Hosogi ◽  
Margaret J. Duncan

ABSTRACT Porphyromonas gingivalis, a gram-negative oral anaerobe, is strongly associated with adult periodontitis. The adherence of the organism to host epithelium signals changes in both cell types as bacteria initiate infection and colonization and epithelial cells rally their defenses. We hypothesized that the expression of a defined set of P. gingivalis genes would be consistently up-regulated during infection of HEp-2 human epithelial cells. P. gingivalis genome microarrays were used to compare the gene expression profiles of bacteria that adhered to HEp-2 cells and bacteria that were incubated alone. Genes whose expression was temporally up-regulated included those involved in the oxidative stress response and those encoding heat shock proteins that are essential to maintaining cell viability under adverse conditions. The results suggest that contact with epithelial cells induces in P. gingivalis stress-responsive pathways that promote the survival of the bacterium.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 894-901 ◽  
Author(s):  
Christopher A. Klug ◽  
Samuel Cheshier ◽  
Irving L. Weissman

Abstract Hematopoietic stem cell gene therapy holds promise for the treatment of many hematologic disorders. One major variable that has limited the overall success of gene therapy to date is the lack of sustained gene expression from viral vectors in transduced stem cell populations. To understand the basis for reduced gene expression at a single-cell level, we have used a murine retroviral vector, MFG, that expresses the green fluorescent protein (GFP) to transduce purified populations of long-term self-renewing hematopoietic stem cells (LT-HSC) isolated using the fluorescence-activated cell sorter. Limiting dilution reconstitution of lethally irradiated recipient mice with 100% transduced, GFP+ LT-HSC showed that silencing of gene expression occurred rapidly in most integration events at the LT-HSC level, irrespective of the initial levels of GFP expression. When inactivation occurred at the LT-HSC level, there was no GFP expression in any hematopoietic lineage clonally derived from silenced LT-HSC. Inactivation downstream of LT-HSC that stably expressed GFPin long-term reconstituted animals was restricted primarily to lymphoid cells. These observations suggest at least 2 distinct mechanisms of silencing retrovirally expressed genes in hematopoietic cells.


Sign in / Sign up

Export Citation Format

Share Document