scholarly journals “Stealth” Adenoviruses Blunt Cell-Mediated and Humoral Immune Responses against the Virus and Allow for Significant Gene Expression upon Readministration in the Lung

2001 ◽  
Vol 75 (10) ◽  
pp. 4792-4801 ◽  
Author(s):  
Maria A. Croyle ◽  
Narendra Chirmule ◽  
Yi Zhang ◽  
James M. Wilson

ABSTRACT Most of the early gene therapy trials for cystic fibrosis have been with adenovirus vectors. First-generation viruses with E1a and E1b deleted are limited by transient expression of the transgene and substantial inflammatory responses. Gene transfer is also significantly curtailed following a second dose of virus. In an effort to reduce adenovirus-associated inflammation, capsids of first-generation vectors were modified with various activated monomethoxypolyethylene glycols. Cytotoxic T-lymphocyte production was significantly reduced in C57BL/6 mice after a single intratracheal administration of modified vectors, and length of gene expression was extended from 4 to 42 days. T-cell subsets from mice exposed to the conjugated vectors demonstrated a marked decrease in Th1 responses and slight enhancement of Th2 responses compared to animals dosed with native virus. Neutralizing antibodies (NAB) against adenovirus capsid proteins were reduced in serum and bronchoalveolar lavage fluid of animals after a single dose of modified virus, allowing significant levels of gene expression upon rechallenge with native adenovirus. Modification with polyethylene glycol (PEG) also allowed substantial gene expression from the new vectors in animals previously immunized with unmodified virus. However, gene expression was significantly reduced after two doses of the same PEG-conjugated vector. Alternating the activation group of PEG between doses did produce significant gene expression upon readministration. This technology in combination with second-generation or helper-dependent adenovirus could produce dosing strategies which promote successful readministration of vector in clinical trials and marked expression in patients with significant anti-adenovirus NAB levels and reduce the possibility of immune reactions against viral vectors for gene therapy.

1999 ◽  
Vol 380 (6) ◽  
Author(s):  
H. Büeler

AbstractAdeno-associated virus (AAV) is a defective, non-pathogenic human parvovirus that depends for growth on coinfection with a helper adenovirus or herpes virus. Recombinant adeno-associated viruses (rAAVs) have attracted considerable interest as vectors for gene therapy. In contrast to other gene delivery systems, rAAVs lack all viral genes and show long-term gene expression


2002 ◽  
Vol 22 (8) ◽  
pp. 959-970 ◽  
Author(s):  
Linglong Zou ◽  
Patricia Yotnda ◽  
Tiejun Zhao ◽  
Xiaoqing Yuan ◽  
Yan Long ◽  
...  

Traumatic brain injury (TBI) causes delayed neuronal deficits that in principle could be prevented by timely intervention with therapeutic genes. However, appropriate vectors for gene transfer to the brain with TBI remain to be developed. First-generation adenoviruses (fgAd) are usually associated with inflammatory and toxic effects when inoculated into brains, despite their high efficiency of gene transfer to these tissues. In this study the authors attempted to determine whether a less immunogenic gene-transfer protocol can be established in the traumatically injured rat brain using helper-dependent adenoviruses (hdAd), a novel adenoviral construct with full deletion of viral coding sequences. Their results show that transgene expression from intrahippocampally inoculated hdAd is maintained for at least 2 months after TBI, in contrast to the much shorter duration of fgAd-mediated gene expression. There was only minimal secretion of proinflammatory IL-1β and TNF-α after inoculation of hdAd. Furthermore, the hdAd-mediated gene expression was associated with less microglial proliferation, astrocytic activation, and macrophage infiltration than observed in fgAd-inoculated brains. There was no additional tissue loss after hdAd inoculation compared with PBS injection. Although both anti-adenoviral and neutralizing antibodies were found in serum after brain inoculation of hdAd, they did not appear to affect transgene expression. The results suggest that hdAd are less immunogenic vectors than conventional adenoviral vectors, and offer improved vehicles for long-term therapeutic transgene transfer to traumatically injured brains.


2003 ◽  
Vol 11 (6) ◽  
pp. 311-323 ◽  
Author(s):  
Yadollah Omidi ◽  
Andrew J. Hollins ◽  
Mustapha Benboubetra ◽  
Ross Drayton ◽  
Ibrahim F. Benter ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (26) ◽  
pp. 5842-5848 ◽  
Author(s):  
Jonathan D. Finn ◽  
Margareth C. Ozelo ◽  
Denise E. Sabatino ◽  
Helen W. G. Franck ◽  
Elizabeth P. Merricks ◽  
...  

Abstract Inhibitory antibodies to factor VIII (FVIII) are a major complication in the treatment of hemophilia A, affecting approximately 20% to 30% of patients. Current treatment for inhibitors is based on long-term, daily injections of large amounts of FVIII protein. Liver-directed gene therapy has been used to induce antigen-specific tolerance, but there are no data in hemophilic animals with pre-existing inhibitors. To determine whether sustained endogenous expression of FVIII could eradicate inhibitors, we injected adeno-associated viral vectors encoding canine FVIII (cFVIII) in 2 strains of inhibitor hemophilia A dogs. In 3 dogs, a transient increase in inhibitor titers (up to 7 Bethesda Units [BU]) at 2 weeks was followed by continuous decline to complete disappearance within 4-5 weeks. Subsequently, an increase in cFVIII levels (1.5%-8%), a shortening of clotting times, and a reduction (> 90%) of bleeding episodes were observed. Immune tolerance was confirmed by lack of antibody formation after repeated challenges with cFVIII protein and normal protein half-life. A fourth dog exhibited a strong early anamnestic response (216 BU), with slow decline to 0.8 BU and cFVIII antigen detection by 18 months after vector delivery. These data suggest that liver gene therapy has the potential to eradicate inhibitors and could improve the outcomes of hemophilia A patients.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 894-901 ◽  
Author(s):  
Christopher A. Klug ◽  
Samuel Cheshier ◽  
Irving L. Weissman

Abstract Hematopoietic stem cell gene therapy holds promise for the treatment of many hematologic disorders. One major variable that has limited the overall success of gene therapy to date is the lack of sustained gene expression from viral vectors in transduced stem cell populations. To understand the basis for reduced gene expression at a single-cell level, we have used a murine retroviral vector, MFG, that expresses the green fluorescent protein (GFP) to transduce purified populations of long-term self-renewing hematopoietic stem cells (LT-HSC) isolated using the fluorescence-activated cell sorter. Limiting dilution reconstitution of lethally irradiated recipient mice with 100% transduced, GFP+ LT-HSC showed that silencing of gene expression occurred rapidly in most integration events at the LT-HSC level, irrespective of the initial levels of GFP expression. When inactivation occurred at the LT-HSC level, there was no GFP expression in any hematopoietic lineage clonally derived from silenced LT-HSC. Inactivation downstream of LT-HSC that stably expressed GFPin long-term reconstituted animals was restricted primarily to lymphoid cells. These observations suggest at least 2 distinct mechanisms of silencing retrovirally expressed genes in hematopoietic cells.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Susana Machado ◽  
Sofia Calado ◽  
Diogo Bitoque ◽  
Ana Vanessa Oliveira ◽  
Christer L. Øpstad ◽  
...  

Recent success in the treatment of congenital blindness demonstrates the potential of ocular gene therapy as a therapeutic approach. The eye is a good target due to its small size, minimal diffusion of therapeutic agent to the systemic circulation, and low immune and inflammatory responses. Currently, most approaches are based on viral vectors, but efforts continue towards the synthesis and evaluation of new nonviral carriers to improve nucleic acid delivery. Our objective is to evaluate the efficiency of novel cationic retinoic and carotenoic glycol phospholipids, designated C20-18, C20-20, and C30-20, to deliver DNA to human retinal pigmented epithelium (RPE) cells. Liposomes were produced by solvent evaporation of ethanolic mixtures of the polyene compounds and coformulated with 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol (Chol). Addition of DNA to the liposomes formed lipoplexes, which were characterized for binding, size, biocompatibility, and transgene efficiency. Lipoplex formulations of suitable size and biocompatibility were assayed for DNA delivery, both qualitatively and quantitatively, using RPE cells and a GFP-encoding plasmid. The retinoic lipoplex formulation with DOPE revealed a transfection efficiency comparable to the known lipid references 3β-[N-(N′,N′-dimethylaminoethane)-carbamoyl]-cholesterol (DC-Chol) and 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine (EPC) and GeneJuice. The results demonstrate that cationic polyene phospholipids have potential as DNA carriers for ocular gene therapy.


Blood ◽  
2000 ◽  
Vol 96 (3) ◽  
pp. 894-901 ◽  
Author(s):  
Christopher A. Klug ◽  
Samuel Cheshier ◽  
Irving L. Weissman

Hematopoietic stem cell gene therapy holds promise for the treatment of many hematologic disorders. One major variable that has limited the overall success of gene therapy to date is the lack of sustained gene expression from viral vectors in transduced stem cell populations. To understand the basis for reduced gene expression at a single-cell level, we have used a murine retroviral vector, MFG, that expresses the green fluorescent protein (GFP) to transduce purified populations of long-term self-renewing hematopoietic stem cells (LT-HSC) isolated using the fluorescence-activated cell sorter. Limiting dilution reconstitution of lethally irradiated recipient mice with 100% transduced, GFP+ LT-HSC showed that silencing of gene expression occurred rapidly in most integration events at the LT-HSC level, irrespective of the initial levels of GFP expression. When inactivation occurred at the LT-HSC level, there was no GFP expression in any hematopoietic lineage clonally derived from silenced LT-HSC. Inactivation downstream of LT-HSC that stably expressed GFPin long-term reconstituted animals was restricted primarily to lymphoid cells. These observations suggest at least 2 distinct mechanisms of silencing retrovirally expressed genes in hematopoietic cells.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 2896-2896
Author(s):  
Hans-Peter Kiem ◽  
Paritha Arumugam ◽  
Burtner Christopher ◽  
Jennifer E Adair ◽  
Brian C Beard ◽  
...  

Abstract Strategies for human gene therapy trials targeting hematopoietic stem cells (HSCs) are complicated by studies in murine models due to differences in stem cell behavior, short life-span and limited HSCs that could be transduced and transplanted when studying safety of viral vectors. Recent reports on adverse genotoxic events with integrating viral vectors in clinical trials utilizing autologous gene corrected HSCs underscores the need for safer gene transfer vectors. Non-human primates are relevant models due to similarities in the behavior of hematopoietic stem/progenitor cells, global gene expression profile, ability to assess long-term engraftment of transduced cells and safety of gene-modified HSCs, and thus could relatively accurately predict risk of vector genotoxicity. As a preclinical step towards globin gene therapy for hemoglobinopathies, we used pigtailed macaque HSC transplantation (HSCT) model to ascertain long-term safety and stable transgene expression from sGbG, a lentiviral vector (LV) encoding human γ-globin coding sequences from a β-globin promoter and locus control region (LCR). We observed upregulation of endogenous macaque fetal hemoglobin post-HSCT, which decreased to minimal levels by two years post-HSCT, a well-documented phenomenon following HSCT in humans. However, fetal hemoglobin (HbF) (comprised of macaque α and human γ-globin) expression remained steady at 12-15% even after 700 days post-HSCT. At 2.5 years post-HSCT, the HbF expression in a macaque transplanted with HSCs gene-modified with sGbG was stable in the range of 13% vs. 0.1% for control macaque; the average vector copy ranged between 0.13 and 0.28 with stable gene marking during the analysis period. In order to evaluate the LV integration site clonal population in sGbG transduced macaque repopulating cells, modified genome sequencing PCR was performed on genomic DNA from white blood cells and PCR products were sequenced. The junction sequences were mapped to the rhesus macaque genome assembly. A total of 177 unique vector insertions were retrieved at 6 months post-HSCT (early) and 102 vector insertions at 2.5 years (late) post-HSCT respectively. The relative distribution of vector insertions into chromosomes revealed a slight over-representation into Chromosome 16, both at early and late time points. Analysis of distribution of LV integrations of with respect to transcription start sites (TSS) revealed no insertions within the 2.5kb region of TSS. The frequency of insertions was concentrated near the 10-50kb window of TSS both upstream (18.6%) and downstream (15.6%) respectively. Interestingly, among the retrieved insertion sites, only 10% (17 insertions) were common at both time points, while 90% of insertions were unique at each time point, suggesting clonal fluctuations, with multiple HSC clones contributing to hematopoiesis at an early time point, and unique, HSC clones emerged at a later time point. Comparison of the top ten most frequently detected insertion sites at both time points revealed one insertion at Chromosome 16 mapping to an intron of KIAA0195 (an uncharacterized protein expressed ubiquitously), retrieved at both time points contributed to 3.27% and 9.23% of gene modified cells at early and late time points, respectively. No insertions were near MDS/EVI1, PRDM16 or HMGA2 loci. Other oncogenes and cancer associated genes were in the vicinity of some integrants; however, there was no significant clustering of insertions in gene regions. To assess the effect of insertions on flanking gene expression or putative cancer associated genes, we performed mRNAseq on whole blood RNA from sGbG macaque and two control macaques. A comparative analysis of transcript levels of >30,000 genes revealed no difference in global gene expression profile, gene insertions and genes within 300kb region of the LV insertion sites. Importantly, transcript levels of the most abundant clone observed (KIAA0195, Chr16: 70791901) and flanking genes, the tRNA splicing endonuclease subunit SEN54 and CASK interacting protein 2 differed from two control macaques analyzed by <2 fold. In summary, long-term follow-up data from a macaque that received cells gene-modified with a human γ-globin LV reveal polyclonal reconstitution of transduced cells, HSC clonal fluctuation, and a normal transcriptional profile, suggesting low risk of genotoxicity from this vector. Arumugam P, Burtner C: Equal Contribution Disclosures: No relevant conflicts of interest to declare.


2018 ◽  
Vol 64 (5) ◽  
pp. 416-422
Author(s):  
M.S. Nazarenko ◽  
A.V. Markov ◽  
A.A. Sleptsov ◽  
I.A. Koroleva ◽  
D.V. Sharysh ◽  
...  

In this study we performed a comparative gene expression analysis of carotid arteries in the area of atherosclerotic plaques and healthy internal mammary arteries of patients with advanced atherosclerosis by using microarray HumanHT-12 BeadChip (“Illumina”). The most down-regulated genes were APOD, FABP4, CIDEC and FOSB, and up-regulated gene was SPP1 (|FC|>64; pFDR<0.05). The majority of differentially expressed genes were down-regulated in advanced atherosclerotic plaques. Unexpectedly, genes involved in immune and inflammatory responses were down-regulated in advanced atherosclerotic plaques to compare with the healthy arteries (arachidonic acid metabolism, cytokine-cytokine receptor interaction, NOD-like receptor signaling pathway, Jak-STAT signaling pathway, TNF signaling pathway). “Cellular response to metal ion” (metallothioneins) and “Extracellular matrix organization” were the most significant Gene ontology terms among the down- and up-regulated genes, respectively.


2000 ◽  
Vol 14 (1) ◽  
pp. 57-61 ◽  
Author(s):  
Catherine H Wu ◽  
Lanlan Shen ◽  
George Y Wu

Advantages and disadvantages of viral vectors and nonviral vectors for gene delivery to digestive organs are reviewed. Advances in systems for the introduction of new gene expression are described, including self-deleting retroviral transfer vectors, chimeric viruses and chimeric oligonucleotides. Systems for inhibition of gene expression are discussed, including antisense oligonucleotides, ribozymes and dominant-negative genes.


Sign in / Sign up

Export Citation Format

Share Document