In Vitro Plasma-Induced Endothelial Oxidative Stress and Circulating Markers of Endothelial Dysfunction in Preeclampsia: An Observational Study

2009 ◽  
Vol 28 (2) ◽  
pp. 212-223 ◽  
Author(s):  
Julien Pottecher ◽  
Olivier Huet ◽  
Vincent Degos ◽  
Marie-Pierre Bonnet ◽  
Pascale Gaussem ◽  
...  
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Rodrigo O. Marañón ◽  
Claudio Joo Turoni ◽  
Maria Sofia Karbiner ◽  
Nicolas Salas ◽  
Maria Peral de Bruno

Nonischemic 5/6 nephrectomized rat (NefR) is a model of chronic kidney disease. However, little is known about vascular dysfunction and its relation with hypertension in NefR.Aims. To evaluate possible alterations of endothelial function, NO-bioavailability, and basal tone in aorta from NefR and the role of oxidative stress. Sprague Dawley rats were divided into sham rats (SR), NefR, and NefR treated with tempol (NefR-T). Mean arterial pressure (MAP) and renal function were determined. In isolated aortic rings the following was measured: 1-endothelial function, 2-basal tone, 3-NO levels, 4-membrane potential (MP), and 5-oxidative stress. NefR increased MAP (SR: 119 ± 4 mmHg;n=7; NefR: 169 ± 6;n=8;P<0.001). Tempol did not modify MAP (NefR-T: 168 ± 10;n=6;P<0.001). NefR showed endothelial dysfunction, increased basal tone and decreased NO levels (SR: 32 ± 2 nA;n=7, NefR: 10 ± 2;n=8;P<0.001). In both in vitro and in vivo tempol improves basal tone, NO levels, and MP. Oxidative stress in NefR was reverted in NefR-T. We described, for the first time, that aorta from NefR presented increased basal tone related to endothelial dysfunction and decreased NO-bioavailability. The fact that tempol improves NO-contents and basal tone, without decrease MAP, indicates that oxidative stress could be implicated early and independently to hypertension, in the vascular alterations.


Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1323
Author(s):  
Francisco R. Jimenez Trinidad ◽  
Marta Arrieta Ruiz ◽  
Núria Solanes Batlló ◽  
Àngela Vea Badenes ◽  
Joaquim Bobi Gibert ◽  
...  

Endothelial cell dysfunction is the principal cause of several cardiovascular diseases that are increasing in prevalence, healthcare costs, and mortality. Developing a standardized, representative in vitro model of endothelial cell dysfunction is fundamental to a greater understanding of the pathophysiology, and to aiding the development of novel pharmacological therapies. We subjected human umbilical vein endothelial cells (HUVECs) to different periods of nutrient deprivation or increasing doses of H2O2 to represent starvation or elevated oxidative stress, respectively, to investigate changes in cellular function. Both in vitro cellular models of endothelial cell dysfunction-associated senescence developed in this study, starvation and oxidative stress, were validated by markers of cellular senescence (increase in β-galactosidase activity, and changes in senescence gene markers SIRT1 and P21) and endothelial dysfunction as denoted by reductions in angiogenic and migratory capabilities. HUVECs showed a significant H2O2 concentration-dependent reduction in cell viability (p < 0.0001), and a significant increase in oxidative stress (p < 0.0001). Furthermore, HUVECs subjected to 96 h of starvation, or exposed to concentrations of H2O2 of 400 to 1000 μM resulted in impaired angiogenic and migratory potentials. These models will enable improved physiological studies of endothelial cell dysfunction, and the rapid testing of cellular efficacy and toxicity of future novel therapeutic compounds.


2013 ◽  
Vol 125 (5) ◽  
pp. 247-255 ◽  
Author(s):  
Takanori Yasu ◽  
Mayumi Kobayashi ◽  
Akiko Mutoh ◽  
Ken Yamakawa ◽  
Shin-ichi Momomura ◽  
...  

Circulating NEFAs (non-esterified fatty acids) from adipose tissue lipolysis lead to endothelial dysfunction and insulin resistance in patients with the metabolic syndrome or Type 2 diabetes mellitus. The aim of the present study was to test the hypothesis that DHP (dihydropyridine) CCBs (calcium channel blockers) prevent NEFA-induced endothelial and haemorheological dysfunction independently of their antihypertensive properties. Using a double-blind cross-over study design, nifedipine, amlodipine, diltiazem or placebo were administered to eight healthy subjects for 2 days before each study day. On the study days, the following were assessed before and after the infusion of lipid and heparin to raise serum NEFAs: endothelial function, by measuring FBF (forearm blood flow) responses to ACh (acetylcholine); leucocyte activation, by ex vivo measurement of plasma MPO (myeloperoxidase) levels, adherent leucocyte numbers and whole blood transit time through microchannels; and oxidative stress, by determining plasma levels of d-ROMs (derivatives of reactive oxygen metabolites). Effects of the CCBs on NF-κB (nuclear factor κB) p65 phospholylation stimulated by NEFAs were assessed in cultured monocytic cells in vitro. Elevated NEFAs reduced the responses to ACh and significantly increased whole blood transit time, adherent leucocyte numbers and d-ROMs. Nifedipine and amlodipine, but not diltiazem, prevented NEFA-induced endothelial dysfunction, leucocyte activation and enhancement of oxidative stress without affecting BP (blood pressure), whereas all these drugs prevented NEFA-induced p65 activation in vitro. These results suggest that DHP CCBs, independent of their antihypertensive properties in humans, prevent NEFA-induced endothelial and haemorheological dysfunction through inhibition of NEFA-induced leucocyte activation, although the sensitivity to drugs of leucocyte Ca2+ channels may differ among cells.


2019 ◽  
Vol 10 (9) ◽  
Author(s):  
Lei Ying ◽  
Na Li ◽  
Zhengyue He ◽  
Xueqin Zeng ◽  
Yan Nan ◽  
...  

Abstract Endothelial dysfunction initiates and exacerbates hypertension, atherosclerosis and other cardiovascular complications in diabetic mellitus. FGF21 is a hormone that mediates a number of beneficial effects relevant to metabolic disorders and their associated complications. Nevertheless, it remains unclear as to whether FGF21 ameliorates endothelial dysfunction. Therefore, we investigated the effect of FGF21 on endothelial function in both type 1 and type 2 diabetes. We found that FGF21 reduced hyperglycemia and ameliorated insulin resistance in type 2 diabetic mice, an effect that was totally lost in type 1 diabetic mice. However, FGF21 activated AMPKα, suppressing oxidative stress and enhancing endothelium-dependent vasorelaxation of aorta in both types, suggesting a mechanism that is independent of its glucose-lowering and insulin-sensitizing effects. In vitro, we identified a direct action of FGF21 on endothelial cells of the aorta, in which it bounds to FGF receptors to alleviate impaired endothelial function challenged with high glucose. Furthermore, the CaMKK2-AMPKα signaling pathway was activated to suppress oxidative stress. Apart from its anti-oxidative capacity, FGF21 activated eNOS to dilate the aorta via CaMKK2/AMPKα activation. Our data suggest expanded potential uses of FGF21 for the treatment of vascular diseases in diabetes.


Thorax ◽  
2021 ◽  
pp. thoraxjnl-2020-215900
Author(s):  
Lorenzo Loffredo ◽  
Roberto Carnevale ◽  
Simona Battaglia ◽  
Roberta Marti ◽  
Stefano Pizzolo ◽  
...  

Tobacco habit still represents the leading preventable cause of morbidity and mortality worldwide. Heat-not-burn cigarettes (HNBCs) are considered as an alternative to traditional combustion cigarettes (TCCs) due to the lack of combustion and the absence of combustion-related specific toxicants. The aim of this observational study was to assess the effect of HNBC on endothelial function, oxidative stress and platelet activation in chronic adult TCC smokers and HNBC users. The results showed that both HNBC and TCC display an adverse phenotype in terms of endothelial function, oxidative stress and platelet activation. Future randomised studies are strongly warranted to confirm these data.


2015 ◽  
Vol 119 (12) ◽  
pp. 1355-1362 ◽  
Author(s):  
Qiong Wang ◽  
Aleksandra Mazur ◽  
François Guerrero ◽  
Kate Lambrechts ◽  
Peter Buzzacott ◽  
...  

Reactive oxygen species (ROS) production is a well-known effect in individuals after an undersea dive. This study aimed to delineate the links between ROS, endothelial dysfunction, and decompression sickness (DCS) through the use of antioxidants in vitro and in vivo. The effect of N-acetylcysteine (NAC) on superoxide and peroxynitrite, nitric oxide (NO) generation, and cell viability during in vitro diving simulation were analyzed. Also analyzed was the effect of vitamin C and NAC on plasma glutathione thiol and thiobarbituric acid reactive substances (TBARS), plasma angiotensin-converting enzyme (ACE) activity, and angiotensin-II and DCS morbidity during in vivo diving simulation. During an in vitro diving simulation, vascular endothelial cells showed overproduction of superoxide and peroxynitrite, obvious attenuation of NO generation, and promotion of cell death, all of which were reversed by NAC treatment. After in vivo diving simulation, plasma ACE activity and angiotensin-II level were not affected. The plasma level of glutathione thiol was downregulated after the dive, which was attenuated partially by NAC treatment. Plasma TBARS level was upregulated; however, either NAC or vitamin C treatment failed to prevent DCS morbidity. During in vitro simulation, endothelial superoxide and peroxynitrite-mediated oxidative stress were involved in the attenuation of NO availability and cell death. This study is the first attempt to link oxidative stress and DCS occurrence, and the link could not be confirmed in vivo. Even in the presence of antioxidants, ROS and bubbles generated during diving and/or decompression might lead to embolic or biochemical stress and DCS. Diving-induced oxidative stress might not be the only trigger of DCS morbidity.


Sign in / Sign up

Export Citation Format

Share Document