DEVELOPMENT AND VALIDATION OF A STABILITY-INDICATING HPLC METHOD FOR ANALYSIS OF ZIDOVUDINE (ZDV) IN BULK DRUG AND IN VITRO RELEASE STUDIES OF TABLETS

2011 ◽  
Vol 34 (8) ◽  
pp. 601-612 ◽  
Author(s):  
Dileep Mandloi ◽  
Priyanka Tripathi ◽  
Palanikar Mohanraj ◽  
Nagendra Singh Chauhan ◽  
Jay Ram Patel
2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Rashmin B. Patel ◽  
Mrunali R. Patel ◽  
Kashyap K. Bhatt ◽  
Bharat G. Patel

A new, simple, and rapid high-performance thin-layer chromatographic method was developed and validated for quantitative determination of Carbamazepine. Carbamazepine was chromatographed on silica gel 60 F254 TLC plate using ethyl acetate-toluene-methanol (5.0 + 4.0 + 1.0 v/v/v) as mobile phase. Carbamazepine was quantified by densitometric analysis at 285 nm. The method was found to give compact spots for the drug (Rf=0.47 ± 0.01). The linear regression analysis data for the calibration plots showed good linear relationship with r2=.9995 in the concentration range 100–600 ng/spot. The method was validated for precision, recovery, repeatability, and robustness as per the International Conference on Harmonization guidelines. The minimum detectable amount was found to be 16.7 ng/spot, whereas the limit of quantitation was found to be 50.44 ng/spot. Statistical analysis of the data showed that the method is precise, accurate, reproducible, and selective for the analysis of Carbamazepine. The method was successfully employed for the estimation of equilibrium solubility, quantification of Carbamazepine as a bulk drug, in commercially available preparation, and in-house developed mucoadhesive microemulsion formulations and solution.


Author(s):  
Nagda C. D. ◽  
Chotai N. P. ◽  
Patel S. B. ◽  
Soni T. J ◽  
Patel U. L

Aceclofenac (ACE) is NSAIDs of a phenyl acetic acid class. It is indicated in arthritis and osteoarthritis, rheumatoid arthritis, ankylosing spondylitis. It has short elimination half life of 4 hours. The objective of the study is to design, characterize and evaluate bioadhesive microspheres of ACE employing carbopol (CP) as bioadhesive polymer. Bioadhesive microspheres of ACE were prepared by solvent evaporation method. The prepared microspheres were free flowing and spherical in shape and characterized for drug loading, mucoadhesion test, infrared spectroscopy (IR), differential scanning colorimetry (DSC) and scanning electron microscopy (SEM). The in-vitro release studies were performed using pH 6.8 phosphate buffer. The drug loaded microspheres in a ratio of 1:5 showed 47% of drug entrapment; percentage mucoadhesion was 81% and 89% release in 10 h. The infrared spectra and DSC showed stable character of aceclofenac in the drug loaded microspheres and revealed the absence of drug-polymer interactions. SEM studies showed that the microspheres are spherical and porous in nature. The in vitro release profiles from microspheres of different polymer-drug ratios followed Higuchi model.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Charu Bharti ◽  
Upendra Nagaich ◽  
Jaya Pandey ◽  
Suman Jain ◽  
Neha Jain

Abstract Background The current investigation is focused on the development and characterization of Eudragit S100 coated nitazoxanide-loaded microbeads as colon-targeted system utilizing central composite design (CCD) and desirability function. The study initiated with the selection of a BCS class II drug nitazoxanide and its preformulation screening with excipients, selection of polymer and identification of concentration for CCD, selection of optimized formulation based on desirability function, and in vitro release studies in simulated gastric and colonic media and stability studies. A two-factor, three-level CCD was employed with two independent variables, i.e. X1 (chitosan % w/v) and X2 (sodium tripolyphosphate % w/v), and three dependent variables, i.e. Y1 (particle size in micrometres), Y2 (percentage yield) and Y3 (percent entrapment efficiency), were chosen. Additionally, surface morphology, mucoadhesion and in vitro drug release studies were also conducted. Result Chitosan concentration showing maximum entrapment and optimum particle size was selected to formulate chitosan beads. The polynomial equation and model graphs obtained from the Design-Expert were utilized to examine the effect of independent variables on responses. The effect of formulation composition was found to be significant (p ˂ 0.05). Based on the desirability function, the optimized formulation was found to have 910.14 μm ± 1.03 particle size, 91.84% ± 0.64 percentage yield and 84.75% ± 0.38 entrapment efficiency with a desirability of 0.961. Furthermore, the formulations were characterized for in vitro drug release in simulated colonic media (2% rat caecal content) and have shown a sustained release of ∼ 92% up to 24 h as compared to in vitro release in simulated gastric fluid. Conclusion The possibility of formulation in enhancing percentage yield and entrapment efficiency of nitazoxanide and the utilization of CCD helps to effectively integrate nitazoxanide microbeads into a potential pharmaceutical dosage form for sustained release.


2017 ◽  
Vol 9 (3-4) ◽  
Author(s):  
Asmaa S. El-Houssiny ◽  
Azza A. Ward ◽  
Dina M. Mostafa ◽  
Salwa L. Abd-El-Messieh ◽  
Kamal N. Abdel-Nour ◽  
...  

AbstractGlucosamine sulfate (GS) has been used orally for the treatment of osteoarthritis (OA). However, it may be susceptible to the liver first pass phenomenon, which greatly affects its bioavailability, in addition to its side effects on the gastrointestinal tract. Alginate nanoparticles (Alg NPs) were investigated as a new drug carrier for transdermal delivery of GS to improve its effectiveness and reduce side effects. GS-Alg NPs were characterized by encapsulation efficiency, NP yield, particle size and surface charge properties. The in vitro release studies of GS and the ex vivo permeability through rat skin were determined using a UV-Vis spectrophotometer. GS-Alg NPs are within the nanometer range of size. High negative surface charge values are obtained and indicate the high suspension stability of the prepared formulation. The in vitro release studies showed that GS is released from Alg NPs in a sustained and prolonged manner. The ex vivo permeability of GS through rat skin is enhanced significantly after encapsulation in the negatively charged Alg NPs. We successfully reported a highly stable nanoparticlulate system using Alg NPs that permits the encapsulation of GS for topical administration, overcoming the disadvantages of oral administration.


2008 ◽  
Vol 43 (3) ◽  
pp. 464-470 ◽  
Author(s):  
Gladys E. Granero ◽  
Marcos M. Maitre ◽  
Claudia Garnero ◽  
Marcela R. Longhi

1970 ◽  
Vol 8 (1) ◽  
pp. 31-38 ◽  
Author(s):  
Mohammad Nezab Uddin ◽  
Ishtiaq Ahmed ◽  
Monzurul Amin Roni ◽  
Muhammad Rashedul Islam ◽  
Mohammad Habibur Rahman ◽  
...  

The objective of this study was to design oral sustained release matrix tablets of Ranolazine usinghydroxypropyl methylcellulose (HPMC) as the retardant polymer and to study the effect of formulation factors suchas polymer proportion and polymer viscosity on the release of drug. In vitro release studies were performed usingUSP type II apparatus (paddle method) in 900 mL of 0.1N HCl at 100 rpm for 12 hours. The release kinetics wasanalyzed using the zero-order, first order, Higuchi and Korsmeyer-Peppas equations to explore and explain themechanism of drug release from the matrix tablets. In vitro release studies revealed that the release rate decreasedwith increase in polymer proportion and viscosity grade. Mathematical analysis of the release kinetics indicated thatthe nature of drug release from the matrix tablets was dependent on drug diffusion and polymer relaxation andtherefore followed non-Fickian or anomalous release. The developed controlled release matrix tablets of Ranolazineprepared with high viscosity HPMC extended release up to 12 hours.Key words: Ranolazine; Sustained release; Methocel E50 Premium LV; Methocel K100LV CR; Methocel K4M CR;Methocel K15M CR.DOI: 10.3329/dujps.v8i1.5333Dhaka Univ. J. Pharm. Sci. 8(1): 31-38, 2009 (June)


Sign in / Sign up

Export Citation Format

Share Document