Evaluation of the impact of soil contamination with mercury and application of soil amendments on the yield and chemical composition of Avena sativa L.

2019 ◽  
Vol 55 (1) ◽  
pp. 82-96 ◽  
Author(s):  
Wiera Sądej ◽  
Andrzej C. Żołnowski ◽  
Zdzisław Ciećko ◽  
Łukasz Grzybowski ◽  
Radosław Szostek
2018 ◽  
Vol 69 (4) ◽  
pp. 961-964
Author(s):  
Andrei Vasile Olteanu ◽  
Georgiana Emmanuela Gilca Blanariu ◽  
Gheorghe Gh. Balan ◽  
Dana Elena Mitrica ◽  
Elena Gologan ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) has become of major interest worldwide, it is estimated that more than 20% of the general population suffer from liver steatosis. NAFLD is highly associated with metabolic risk factors like type 2 diabetes mellitus, obesity and dyslipidemia, the patients diagnosed with NAFLD should adopt a high fiber low calorie diet, with reduced saturated fat and carbohydrates content, leading to weight loss and improvement of metabolic profile. Our study is aiming to shape the profile of the patient interested in being informed related to food quality and chemical composition and to evaluate the aspects on the food products label which are important for the customer. Between June 2017 and December 2017, 83 patients diagnosed with NASH were included in the study, representing the study group, while 33 subjects, without metabolic syndrome or digestive diseases, selected from patient list belonging to two general practitioners, constituted the control group. Related to the interest of being informed about the chemical composition and nutritional value of the products bought, the study showed a low interest for the provided information on nutritional value. lack of confidence in the provided information and complexity of the information are understandable, the high number of subject reasoning through lack of immediate clinical benefit is surprising. Among the healthy population the willingness to pay attention to this aspect is extremely low.


2019 ◽  
Vol 9 (4) ◽  
pp. 268-279
Author(s):  
Mohamed E.I. Badawy ◽  
Ibrahim E.A. Kherallah ◽  
Ahmed S.O. Mohareb ◽  
Mohamed. Z.M. Salem ◽  
Hameda A. Yousef

Background:Plant extracts are important products in the world and have been widely used for isolation of important biologically active products. Because of their significant environmental impact, extensive research has been explored to determine the antimicrobial activity of plant extracts.Methods:Acetone extracts of the bark and leaf of Cupressus sempervirens and Juniperus phoenicea, collected from three different altitudes (125, 391, and 851 m high of sea level) at Al- Jabel Al-Akhdar area, Libya were obtained and analyzed by GC/MS. The antimicrobial activity of the extracts was further evaluated against plant bacteria Rhizobium radiobacter, Erwinia carotovora, Rhodococcus fascians and Ralstonia solanacearum and fungus Botrytis cinerea.Results:The impact of the altitude from the sea level on the quantity and chemical constituents of the extracts was investigated. The yield was largely dependent on tree species and the highest yield (6.50%) was obtained with C. sempervirens L bark of altitude III (851 m of the sea level), while the lowest (1.17%) was obtained with the leaf extract of C. sempervirens L from altitude I (125 m). The chemical composition analyzed by GC/MS confirmed that the leaf extracts of C. sempervirens and J. phoenicea contained a complex mixture of monoterpene hydrocarbons, sesquiterpenes, diterpenes, diterpenoids, terpenophenolic, steroids and phthalates. However, the bark extracts of both trees contained a mixture of sesquiterpenes, diterpenes, diterpenoids, terpenophenolics, phthalates, retinol and steroids. These constituents revealed some variability among the extracts displaying the highest interesting chemotype of totarol (terpenophenolic) in all extracts (14.63-78.19% of the total extract). The extracts displayed a noteworthy antifungal potency with varying degrees of inhibition of growth with EC50 values ranged from 78.50 to 206.90 mg/L. The extracts obtained from the leaves of C. sempervirens showed that the highest inhibitory activity was obtained with the extract of altitude II (391 m) with MIC 565, 510, 380 and 710 mg/L against E. carotovora, R. fascians, and R. radiobacter and R. solanacearum, respectively.Conclusion:Based on antimicrobial activity, raw plant extracts can be a cost-effective way to protect crops from microbial pathogens. Because plant extracts contain several antimicrobial compounds, the development of resistant pathogens can be delayed.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4003
Author(s):  
Mirosław Wyszkowski ◽  
Jadwiga Wyszkowska ◽  
Agata Borowik ◽  
Natalia Kordala

The aim of the research was to determine the effect of soil contamination with diesel oil (0; 5; 10 and 15 cm3 kg−1 of soil) on the content of trace elements in the aboveground parts of oat (Avena sativa L.). Stabilised sewage sludge was used to mitigate the likely negative impact of diesel oil on the plant. Growing soil contamination with diesel oil had a significant impact on the content of trace elements in the aboveground biomass of oat. In the series without sewage sludge, the contents of the analysed elements, except for chromium, zinc, copper and cobalt, were positively correlated with the increasing doses of diesel oil. The largest increase in the content was recorded in the case of manganese. The sewage sludge used to reduce the influence of diesel oil on the chemical composition of oat had a positive effect on the content of the analysed trace elements. Compared to the series without the addition of a stabilised sewage sludge, it contributed to a reduction in the average content of chromium, nickel, copper, manganese and cobalt in the aboveground parts of oat plants. No significant effect of the applied remediation treatment was noted for cadmium, and the results were equivocal for iron.


2011 ◽  
Vol 2 ◽  
pp. 152-161 ◽  
Author(s):  
Hans J Ensikat ◽  
Petra Ditsche-Kuru ◽  
Christoph Neinhuis ◽  
Wilhelm Barthlott

Lotus leaves have become an icon for superhydrophobicity and self-cleaning surfaces, and have led to the concept of the ‘Lotus effect’. Although many other plants have superhydrophobic surfaces with almost similar contact angles, the lotus shows better stability and perfection of its water repellency. Here, we compare the relevant properties such as the micro- and nano-structure, the chemical composition of the waxes and the mechanical properties of lotus with its competitors. It soon becomes obvious that the upper epidermis of the lotus leaf has developed some unrivaled optimizations. The extraordinary shape and the density of the papillae are the basis for the extremely reduced contact area between surface and water drops. The exceptional dense layer of very small epicuticular wax tubules is a result of their unique chemical composition. The mechanical robustness of the papillae and the wax tubules reduce damage and are the basis for the perfection and durability of the water repellency. A reason for the optimization, particularly of the upper side of the lotus leaf, can be deduced from the fact that the stomata are located in the upper epidermis. Here, the impact of rain and contamination is higher than on the lower epidermis. The lotus plant has successfully developed an excellent protection for this delicate epistomatic surface of its leaves.


2013 ◽  
Vol 13 (15) ◽  
pp. 7875-7894 ◽  
Author(s):  
I. El Haddad ◽  
B. D'Anna ◽  
B. Temime-Roussel ◽  
M. Nicolas ◽  
A. Boreave ◽  
...  

Abstract. As part of the FORMES summer 2008 experiment, an Aerodyne compact time-of-flight aerosol mass spectrometer (cToF-AMS) was deployed at an urban background site in Marseille to investigate the sources and aging of organic aerosols (OA). France's second largest city and the largest port in the Mediterranean, Marseille, provides a locale that is influenced by significant urban industrialized emissions and an active photochemistry with very high ozone concentrations. Particle mass spectra were analyzed by positive matrix factorization (PMF2) and the results were in very good agreement with previous apportionments obtained using a chemical mass balance (CMB) approach coupled to organic markers and metals (El Haddad et al., 2011a). AMS/PMF2 was able to identify for the first time, to the best of our knowledge, the organic aerosol emitted by industrial processes. Even with significant industries in the region, industrial OA was estimated to contribute only ~ 5% of the total OA mass. Both source apportionment techniques suggest that oxygenated OA (OOA) constitutes the major fraction, contributing ~ 80% of OA mass. A novel approach combining AMS/PMF2 data with 14C measurements was applied to identify and quantify the fossil and non-fossil precursors of this fraction and to explicitly assess the related uncertainties. Results show with high statistical confidence that, despite extensive urban and industrial emissions, OOA is overwhelmingly non-fossil, formed via the oxidation of biogenic precursors, including monoterpenes. AMS/PMF2 results strongly suggest that the variability observed in the OOA chemical composition is mainly driven in our case by the aerosol photochemical age. This paper presents the impact of photochemistry on the increase of OOA oxygenation levels, formation of humic-like substances (HULIS) and the evolution of α-pinene SOA (secondary OA) components.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3569
Author(s):  
Yicheng Tan ◽  
Zhang Ye ◽  
Mansheng Wang ◽  
Muhammad Faisal Manzoor ◽  
Rana Muhammad Aadil ◽  
...  

In this study, the impact of different cell disruption techniques (high-pressure micro fluidization (HPMF), ionic liquids (ILs), multi-enzyme (ME), and hydrochloric acid (HCl)) on the chemical composition and biological activity of astaxanthin (AST) obtained from Haematococcus pluvialis was investigated. Results indicated that all cell disruption techniques had a significant effect on AST composition, which were confirmed by TLC and UPC2 analysis. AST recovery from HCl (HCl-AST) and ILs (ILs-AST) cell disruption techniques was dominant by free and monoesters AST, while AST recovery from HPMF (HPMF-AST) and ME (ME-AST) cell disruption techniques was composed of monoesters, diesters, and free AST. Further biological activity analysis displayed that HCl-AST showed the highest ABTS and DPPH activity, while ILs-AST showed better results against the ORAC assay. Additionally, ILs-AST exhibits a stronger anti-proliferation of HepG2 cells in a dose-dependent manner, which was ascribed to AST-induced ROS in to inhibit the proliferative of cancer cells.


2021 ◽  
Vol 9 (16) ◽  
pp. 57-68
Author(s):  
Halyna Voloshchuk ◽  

Subject of research – sugar content in rye bread with fractionally defatted flour from walnuts, pumpkin seeds, sesame and Jerusalem artichoke powder. The purpose – to investigate the chemical composition of sugars in flour from oilseed meal and to explain the impact of new raw materials upon the sugar content in bread made from rye flour. Materials and methods. For the production of pilot of bread used: rye flour; fermented rye malt; table salt; drinking water; ready liquid rye sourdough (composition: Lactobacillus plantarum 30, L .casei 26, L. fermenti 34, L .brevis and Saccharomyces minor "Chernorichenskaya", S. cerevisiae L1); fractionally defatted flour from walnuts, pumpkin seeds and sesame produced by PE "Research and Production Company "Elitfito"; Jerusalem artichoke powder "Dar". The dough was prepared in a three-phase way: liquid sourdough – saccharified choux – dough. Jerusalem artichoke powder and oilseed meal were added to the dough. The chemical composition of sugars in raw materials and bread was determined by high-performance liquid chromatography. The effect of fractionally defatted flour on the course of processes in rye dough was performed on a farinograph and amylograph of Brabender. The intensity of gas formation of the dough was determined on the device AG-1. Changes in the crystal structure of the bread crumb were performed using X-ray phase analysis on the device DRON UM-1 in the range of angles 2θ from 5 to 60 degrees. Results. It is established that the share of sugars in flour from oilseed meal is 2 ... 8 times higher than the content of sugars in rye flour. The content of sugars in fractionally defatted flour from walnuts is 43.0 %, from pumpkin seeds – 14.2 %, from sesame – 12.8% by weight of dry matter. Up to 80% of all sugars in fractionally defatted flour are sucrose and maltose. The ratio of fructose to glucose in fractionally defatted flour from walnuts is 1:1.25; from pumpkin seeds – 1:0.73; of sesame seeds – 1:0.5. The addition of 7.0 % fractionally defatted flour mixed with 3 % of the Jerusalem artichoke powder reduces the mass fraction of sugars in bread compared to the bread made with Jerusalem artichoke only. It has been studied that fractionally defatted flour from walnuts, pumpkin seeds and sesame reduces the hydrolytic decomposition of rye flour starch and promotes the process of fermentation of sugars. Scope. A mixture of fractionally defatted flour from oilseed meal in the amount of 7 % should be used for the production of bread from rye flour with 3 % Jerusalem artichoke powder to the mass fraction of flour to reduce the content of high glycemic starch sugars.


2018 ◽  
Vol 61 (2) ◽  
pp. 559-570
Author(s):  
Dyan L. Pratt ◽  
Terrance A. Fonstad

Abstract. In the event of a mass livestock mortality situation, disposal routes such as burial are commonly chosen. The impact of burial on the environment could be substantial, but the composition of the leachate arising from a burial site has not been well documented. This study was performed to determine the chemical composition of leachate arising from animal mortalities in a burial setting. Three species of livestock were used: bovine, swine, and poultry. Leachate collected from lined burial pits over two years of decomposition was analyzed for major and minor ions. Analysis indicated that livestock mortality leachate contains, on average, concentrations of 46,000 mg L-1 of alkalinity (as bicarbonate), 12,600 mg L-1 of ammonium-N, 2600 mg L-1 of chloride, 3600 mg L-1 of sulfate, 2300 mg L-1 of potassium, 1800 mg L-1 of sodium, and 1500 mg L-1 of phosphorus, along with lesser amounts of iron, calcium, and magnesium. Select samples had maximum concentrations of ammonium-N and bicarbonate up to 50% higher than these average values. In comparison to earthen swine manure storages and landfills, the ionic strength of the leachate was 2 to 4 times higher, and therefore its impact on water resources could be greater. Following the study of the chemical composition of livestock mortality leachate, the potential impacts of this leachate on the soil/water systems below a burial site were investigated. The ionic strength of the leachate presents its own set of challenges. Basic modeling of ion activity using the five most common activity coefficient equations (Debye-Hückel, extended Debye-Hückel, Truesdell-Jones, Davies, and Pitzer) were considered to assess the sensitivity of these methods for calculated ion activity as impacted by the ionic strength of the leachate. This was completed to further enhance the modeling and speciation efforts. Based on the results and the applicability of the Truesdell-Jones equation, PHREEQC was used to assess the chemical speciation of the leachate. The speciation of this leachate provides evidence of phosphate and sulfate compounds available for potential unattenuated transport. Understanding the geochemical implications of livestock mortality burial will give scientists and regulators more information for performing future risk analyses when considering mortality burial as a management option, either routinely or during a mass mortality event. Keywords: Ion activity coefficient, Ionic strength, Leachate chemical composition, Livestock burial leachate, Speciation.


2016 ◽  
Author(s):  
L. Li ◽  
P. Tang ◽  
S. Nakao ◽  
D. R. Cocker III

Abstract. The molecular structure of volatile organic compounds (VOC) determines their oxidation pathway, directly impacting secondary organic aerosol (SOA) formation. This study comprehensively investigates the impact of molecular structure on SOA formation from the photooxidation of twelve different eight to nine carbon aromatic hydrocarbons under low NOx conditions. The effects of the alkyl substitute number, location, carbon chain length and branching structure on the photooxidation of aromatic hydrocarbons are demonstrated by analyzing SOA yield, chemical composition and physical properties. Aromatic hydrocarbons, categorized into five groups, show a yield order of ortho (o-xylene and o-ethyltoluene) > one substitute (ethylbenzene, propylbenzene and isopropylbenzene) > meta (m-xylene and m-ethyltoluene) > three substitute (trimethylbenzenes) > para (p-xylene and p-ethyltoluene). SOA yields of aromatic hydrocarbon photooxidation do not monotonically decrease when increasing alkyl substitute number. The ortho position promotes SOA formation while the para position suppresses aromatic oxidation and SOA formation. Observed SOA chemical composition and volatility confirm that higher yield is associated with further oxidation. SOA chemical composition also suggests that aromatic oxidation increases with increasing alkyl substitute chain length and branching structure. Further, carbon dilution theory developed by Li et al. (2015a) is extended in this study to serve as a standard method to determine the extent of oxidation of an alkyl substituted aromatic hydrocarbon.


Sign in / Sign up

Export Citation Format

Share Document