scholarly journals Long-term turnover of the sponge fauna in Faro Lake (North-East Sicily, Mediterranean Sea)

2016 ◽  
Vol 83 (4) ◽  
pp. 579-588 ◽  
Author(s):  
M. V. Marra ◽  
M. Bertolino ◽  
M. Pansini ◽  
S. Giacobbe ◽  
R. Manconi ◽  
...  
Keyword(s):  
Think India ◽  
2019 ◽  
Vol 22 (2) ◽  
pp. 296-304
Author(s):  
Biplab Tripathy ◽  
Tanmoy Mondal

India is a subcontinent, there huge no of people lived in river basin area. In India there more or less 80% of people directly or indirectly depend on River. Ganga, Brahamputra in North and North East and Mahanadi, Govabori, Krishna, Kaveri, Narmoda, Tapti, Mahi in South are the major river basin in India. There each year due to flood and high tide lots of people are suffered in river basin region in India. These problems destroy the socio economic peace and hope of the people in river basin. There peoples are continuously suffered by lots of difficulties in sort or in long term basis. Few basin regions are always in high alert at the time of monsoon seasons. Sometime due to over migration from basin area, it becomes empty and creates an ultimate loss of resources in India and causes a dis-balance situation in this area.


2018 ◽  
pp. 149-154

Vera Antonovna Martynenko (17.02.1936–06.01.2018) — famous specialist in the field of studying vascular plant flora and vegetation of the Far North, the Honored worker of the Komi Republic (2006), The Komi Republic State Scientific Award winner (2000). She was born in the town Likhoslavl of the Kali­nin (Tver) region. In 1959, Vera Antonovna graduated from the faculty of soil and biology of the Leningrad State University and then moved to the Komi Branch of USSR Academy of Science (Syktyvkar). From 1969 to 1973 she passed correspondence postgraduate courses of the Komi Branch of USSR Academy of ­Science. In 1974, she received the degree of candidate of biology (PhD) by the theme «Comparative analysis of the boreal flora at the Northeast European USSR» in the Botanical Institute (St. Petersburg). In 1996, Vera Antonovna received the degree of doctor of biology in the Institute of plant and animal ecology (Ekaterinburg) «Flora of the northern and mid subzones of the taiga of the European North-East». The study and conservation of species and coenotical diversity of the plant world, namely the vascular plants flora of the Komi Republic and revealing its transformation under the anthropogenic influence, was in the field of V. A. Martynenko’ scientific interests. She made great contribution to the study of the Komi Republic meadow flora and the pool of medi­cinal plants. She performed inventorying and mapping the meadows of several agricultural enterprises of the Republic, revealed the species composition and places for harvesting medicinal plants and studied their productivity in the natural flora of the boreal zone. The results of her long-term studies were used for making the NPA system and the Red Book of the Komi Republic (1998 and 2009). Vera Antonovna participated in the research of the influence of placer gold mining and oil development on the natural ecosystems of the North, and developed the method of long-term monitoring of plant cover. Results of these works are of high practical value. V. A. Martynenko is an author and coauthor of more than 130 scientific publications. The most important jnes are «Flora of Northeast European USSR» (1974, 1976, and 1977), «Floristic composition of fodder lands of the Northeast Europe» (1989), «The forests of the Komi Republic» (1999), «Forestry of forest resources of the Komi Republic» (2000), «The list of flora of the Yugyd va national park» (2003), «The guide for vascular plants of the Syktyvkar and its vicinities» (2005), «Vascular plants of the Komi Republic» (2008), and «Resources of the natural flora of the Komi Republic» (2014). She also was an author of «Encyclopedia of the Komi Republic» (1997, 1999, and 2000), «Historical and cultural atlas of the Komi Republic» (1997), «Atlas of the Komi Republic» (2001, 2011). V. A. Martynenko made a great contribution to the development of the botanical investigations in the North. Since 1982, during more than 10 years, she was the head of the Department of the Institute of Biology. Three Ph. D. theses have been completed under her leadership. Many years, she worked actively in the Dissertation Council of the Institute of biology Komi Scientific Centre UrB RAS.  The death of Vera Antonovna Martynenko is a heavy and irretrievable loss for the staff of the Institute of Biology. The memory of Vera Antonovna will live in her numerous scientific works, the hearts of students and colleagues.


2021 ◽  
Author(s):  
V.A. Martynenko ◽  
◽  
B.I. Gruzdev

The results of a long-term studu of the flora of technologenichabitats of the taiga zone of the Komi Republic are summarized. An annotated list of vascular plants is presented, including 406 species from 222 genera and 52 families. For each of them, it is indicated that they belong to a life from, an element of the flora and type of area, an ecologicsl group, zonal and ecotopic affinity. Data on the taxonomic composition of vascular plants, the biomorphrological, geographical, and ecological structures of synanthropic flora, the diversity of synanthropic plant communities, and the stages of vegetation restoration in disturbed areas are presented.


Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 301-324 ◽  
Author(s):  
K. Schroeder ◽  
C. Millot ◽  
L. Bengara ◽  
S. Ben Ismail ◽  
M. Bensi ◽  
...  

Abstract. The long-term monitoring of basic hydrological parameters (temperature and salinity), collected as time series with adequate temporal resolution (i.e. with a sampling interval allowing the resolution of all important timescales) in key places of the Mediterranean Sea (straits and channels, zones of dense water formation, deep parts of the basins), constitute a priority in the context of global changes. This led CIESM (The Mediterranean Science Commission) to support, since 2002, the HYDROCHANGES programme (http//www.ciesm.org/marine/programs/hydrochanges.htm), a network of autonomous conductivity, temperature, and depth (CTD) sensors, deployed on mainly short and easily manageable subsurface moorings, within the core of a certain water mass. The HYDROCHANGES strategy is twofold and develops on different scales. To get information about long-term changes of hydrological characteristics, long time series are needed. But before these series are long enough they allow the detection of links between them at shorter timescales that may provide extremely valuable information about the functioning of the Mediterranean Sea. The aim of this paper is to present the history of the programme and the current set-up of the network (monitored sites, involved groups) as well as to provide for the first time an overview of all the time series collected under the HYDROCHANGES umbrella, discussing the results obtained thanks to the programme.


2017 ◽  
pp. 3-21 ◽  
Author(s):  
D. A. Kaverin ◽  
A. V. Pastukhov

The specificities of temperature regime of automorphic clayey soils forming under the suffruticous and shrub vegetation within the zone of tundra and forest tundra in the European North-East were studied. As the objects of investigation we chose the organic cryometamorphic soils and cryometamorphic gleezems; in the both soil types the CRM cryometamorphic horizon is developed. The soils are formed in conditions of long-termed seasonal freezing at the absence (deep occurrence) of the permafrost rocks. The dynamics near the zero temperatures (zero curtains) is characterized. The hypothesis, concerning the role of zero curtains in the sustaining of the specific angular-grainy structure within the mass of cryometamorphic horizons is formulated. The mass of cryometamorphic horizons and the depth of present-day zero curtains, which observed at the long-term seasonal soil freezing, correlate to each other. The impact of suffruticous and shrub vegetation on the specificities of winter and summer soil temperature regime is determined. We discovered that the main differences between the soils developing under suffruticous and shrub vegetation tundras are stipulated by the different intensity of the snow accumulation within these areas. The soils that are developed under the shrub vegetation are warmer than soils developed under the suffruticous tundra, where permafrost may occur at the depth of 2-3 cm. In general, seasonaly freezing tundra soils are located in the middle of the range of the automorphic clay loamy soils in the tundra-taiga ecotone of European North-East of Russia, and occupy the niche between permafrost tundra and non-permafrost north taiga soils.


2018 ◽  
Author(s):  
Athanasia Iona ◽  
Athanasios Theodorou ◽  
Sarantis Sofianos ◽  
Sylvain Watelet ◽  
Charles Troupin ◽  
...  

Abstract. We present a new product composed of a set of thermohaline climatic indices from 1950 to 2015 for the Mediterranean Sea such as decadal temperature and salinity anomalies, their mean values over selected depths, decadal ocean heat and salt content anomalies at selected depth layers as well as their long times series. It is produced from a new high-resolution climatology of temperature and salinity on a 1/8° regular grid based on historical high quality in situ observations. Ocean heat and salt content differences between 1980–2015 and 1950–1979 are compared for evaluation of the climate shift in the Mediterranean Sea. The spatial patterns of heat and salt content shifts demonstrate in greater detail than ever before that the climate changes differently in the several regions of the basin. Long time series of heat and salt content for the period 1950 to 2015 are also provided which indicate that in the Mediterranean Sea there is a net mean volume warming and salting since 1950 with acceleration during the last two decades. The time series also show that the ocean heat content seems to fluctuate on a cycle of about 40 years and seems to follow the Atlantic Multidecadal Oscillation climate cycle indicating that the natural large scale atmospheric variability could be superimposed on to the warming trend. This product is an observations-based estimation of the Mediterranean climatic indices. It relies solely on spatially interpolated data produced from in-situ observations averaged over decades in order to smooth the decadal variability and reveal the long term trends with more accuracy. It can provide a valuable contribution to the modellers' community, next to the satellite-based products and serve as a baseline for the evaluation of climate-change model simulations contributing thus to a better understanding of the complex response of the Mediterranean Sea to the ongoing global climate change. The product is available here: https://doi.org/10.5281/zenodo.1210100.


2019 ◽  
Author(s):  
Malek Belgacem ◽  
Jacopo Chiggiato ◽  
Mireno Borghini ◽  
Bruno Pavoni ◽  
Gabriella Cerrati ◽  
...  

Abstract. Long-term time-series are a fundamental prerequisite to understand and detect climate shifts and trends. Understanding the complex interplay of changing ocean variables and the biological implication for marine ecosystems requires extensive data collection for monitoring and hypothesis testing and validation of modelling products. In marginal seas, such as Mediterranean Sea, there are still monitoring gaps, both in time and in space. To contribute filling these gaps, an extensive dataset of dissolved inorganic nutrients profiles (nitrate, NO3; phosphate, PO43−; and silicate, SiO2) have been collected between 2004 and 2017 in the Western Mediterranean Sea and subjected to quality control techniques to provide to the scientific community a publicly available, long-term, quality controlled, internally consistent biogeochemical data product. The database includes 870 stations of dissolved inorganic nutrients sampled during 24 cruises, including temperature and salinity. Details of the quality control (primary and secondary quality control) applied are reported. The data are available in PANGAEA (https://doi.org/10.1594/PANGAEA.904172, Belgacem et al. 2019).


2012 ◽  
Vol 13 (1) ◽  
pp. 12 ◽  
Author(s):  
H. EL LAKHRACH ◽  
A. HATTOUR ◽  
O. JARBOUI ◽  
K. ELHASNI ◽  
A.A. RAMOS-ESPLA

The aim of this paper is to bring to light the knowledge of marine diversity of invertebrates in Gabes gulf. The spatial distribution of the megabenthic fauna community in Gabes gulf (Tunisia, Eastern Mediterranean Sea), together with the bottom type and vegetation cover, were studied. The abundance of the megabenthic fauna was represented by eight groups: Echinodermata (38%), Crustacea (21%), Tunicata (19%), Mollusca (13%), Porifera (4%), Cnidaria (3%), Bryozoa, and Annelida (2%). It was spatially more concentrated in the coast area of the gulf than in the offshore waters. This area, especially, in Southern Kerkennah, North-est of Gabes and North-east of Djerba appeared to be in a good ecological condition  hosting a variety of species like the paguridsPaguristes eremita and Pagurus cuanensis, the brachyura Medorippe lanata, Inachus doresttensis, the Gastropoda Hexaplex trunculus, Bolinus brandaris, Aporrhais pespelecani, andErosaria turdus, the Bivalvia Fulvia fragilis, the Echinoidea Psammechinus microtuberculatus, Holothuria polii,Ophiothrix fragilis and Antedon mediterranea, and the AscidiaceaAplidium cf. conicum, Didemnum spp, and Microcosmus exasperatus.The species’ compositions of the megabentic fauna community showed clearly that the spatial analysis represented the differences between the community of these two regions (inshore waters and offshore waters). These differences were closely related to peculiar characters of the fauna and biotopes (depth, bottom type and vegetation cover community). The results of the present study should be considered as a necessary starting point for a further analysis of priceless benthic fauna contribution to the marine environment and its organisms.


Sign in / Sign up

Export Citation Format

Share Document