Disaggregating population density of the European Union with CORINE land cover

2011 ◽  
Vol 25 (12) ◽  
pp. 2051-2069 ◽  
Author(s):  
F.J. Gallego ◽  
F. Batista ◽  
C. Rocha ◽  
S. Mubareka
2021 ◽  
Vol 13 (4) ◽  
pp. 777
Author(s):  
Anca Dabija ◽  
Marcin Kluczek ◽  
Bogdan Zagajewski ◽  
Edwin Raczko ◽  
Marlena Kycko ◽  
...  

Land cover information is essential in European Union spatial management, particularly that of invasive species, natural habitats, urbanization, and deforestation; therefore, the need for accurate and objective data and tools is critical. For this purpose, the European Union’s flagship program, the Corine Land Cover (CLC), was created. Intensive works are currently being carried out to prepare a new version of CLC+ by 2024. The geographical, climatic, and economic diversity of the European Union raises the challenge to verify various test areas’ methods and algorithms. Based on the Corine program’s precise guidelines, Sentinel-2 and Landsat 8 satellite images were tested to assess classification accuracy and regional and spatial development in three varied areas of Catalonia, Poland, and Romania. The method is dependent on two machine learning algorithms, Random Forest (RF) and Support Vector Machine (SVM). The bias of classifications was reduced using an iterative of randomized training, test, and verification pixels. The ease of the implementation of the used algorithms makes reproducing the results possible and comparable. The results show that an SVM with a radial kernel is the best classifier, followed by RF. The high accuracy classes that can be updated and classes that should be redefined are specified. The methodology’s potential can be used by developers of CLC+ products as a guideline for algorithms, sensors, and the possibilities and difficulties of classifying different CLC classes.


2020 ◽  
Vol 12 (13) ◽  
pp. 2137 ◽  
Author(s):  
Ilinca-Valentina Stoica ◽  
Marina Vîrghileanu ◽  
Daniela Zamfir ◽  
Bogdan-Andrei Mihai ◽  
Ionuț Săvulescu

Monitoring uncontained built-up area expansion remains a complex challenge for the development and implementation of a sustainable planning system. In this regard, proper planning requires accurate monitoring tools and up-to-date information on rapid territorial transformations. The purpose of the study was to assess built-up area expansion, comparing two freely available and widely used datasets, respectively, Corine Land Cover and Landsat, to each other, as well as the ground truth, with the goal of identifying the most cost-effective and reliable tool. The analysis was based on the largest post-socialist city in the European Union, the capital of Romania, Bucharest, and its neighboring Ilfov County, from 1990 to 2018. This study generally represents a new approach to measuring the process of urban expansion, offering insights about the strengths and limitations of the two datasets through a multi-level territorial perspective. The results point out discrepancies between the datasets, both at the macro-scale level and at the administrative unit’s level. On the macro-scale level, despite the noticeable differences, the two datasets revealed the spatiotemporal magnitude of the expansion of the built-up area and can be a useful tool for supporting the decision-making process. On the smaller territorial scale, detailed comparative analyses through five case-studies were conducted, indicating that, if used alone, limitations on the information that can be derived from the datasets would lead to inaccuracies, thus significantly limiting their potential to be used in the development of enforceable regulation in urban planning.


2020 ◽  
Vol 12 (21) ◽  
pp. 3479
Author(s):  
Yuan Gao ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Xidong Chen ◽  
Jun Mi ◽  
...  

Land-cover plays an important role in the Earth’s energy balance, the hydrological cycle, and the carbon cycle. Therefore, it is important to evaluate the current global land-cover (GLC) products and to understand the differences between these products so that they can be used effectively in different applications. In this study, three 30-m GLC products, namely GlobeLand30-2010, GLC_FCS30-2015, and FROM_GLC30-2015, were evaluated in terms of areal consistency and spatial consistency using the Land Use/Cover Area frame statistical Survey (LUCAS) reference dataset over the European Union (EU). Given the limitations of the traditional confusion matrix used in accuracy assessment, we adjusted the confusion matrices from sample counts by accounting for the class proportions of the map and reported the standard errors of the descriptive accuracy measures in the accuracy assessment. The results revealed the following. (1) The overall accuracy of the GlobeLand30-2010 product was the highest at 88.90 ± 0.68%; this was followed by GLC_FCS30-2015 (84.33 ± 0.80%) and FROM_GLC2015 (65.31 ± 1.0%). (2) The consistency between the GLC_FCS30-2015 and GlobeLand30-2010 is higher than the consistency between other products, with an area correlation coefficient of 0.930 and a proportion of consistent pixels of 52.41%, respectively. (3) Across the area of the EU, the dominant land-cover types such as forest and cropland are the most consistent across the three products, whereas the spatial consistency for bare land, grassland, shrubland, and wetland is relatively low. (4) The proportion of pixels for which the consistency is low accounts for less than 16.17% of pixels, whereas the proportion of pixels for which the consistency is high accounts for about 39.12%. The disagreement between these products primarily occurs in transitional zones with mixed land cover types or in mountain areas. Overall, the GlobeLand30 and GLC-FCS30 products were found to be the most consistent and to have good classification accuracy in the EU, with the disagreement between the three 30-m GLC products mainly occurring in heterogeneous regions.


Plants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 593 ◽  
Author(s):  
Péter Szilassi ◽  
Gábor Szatmári ◽  
László Pásztor ◽  
Mátyás Árvai ◽  
József Szatmári ◽  
...  

For developing global strategies against the dramatic spread of invasive species, we need to identify the geographical, environmental, and socioeconomic factors determining the spatial distribution of invasive species. In our study, we investigated these factors influencing the occurrences of common milkweed (Asclepias syriaca L.), an invasive plant species that is of great concern to the European Union (EU). In a Hungarian study area, we used country-scale soil and climate databases, as well as an EU-scale land cover databases (CORINE) for the analyses. For the abundance data of A. syriaca, we applied the field survey photos from the Land Use and Coverage Area Frame Survey (LUCAS) Land Cover database for the European Union. With machine learning algorithm methods, we quantified the relative weight of the environmental variables on the abundance of common milkweed. According to our findings, soil texture and soil type (sandy soils) were the most important variables determining the occurrence of this species. We could exactly identify the actual land cover types and the recent land cover changes that have a significant role in the occurrence the common milkweed in Europe. We could also show the role of climatic conditions of the study area in the occurrence of this species, and we could prepare the potential distribution map of common milkweed for the study area.


2014 ◽  
Vol 6 (7) ◽  
pp. 5976-5994 ◽  
Author(s):  
Sebastian Aleksandrowicz ◽  
Konrad Turlej ◽  
Stanisław Lewiński ◽  
Zbigniew Bochenek

2010 ◽  
Vol 31 (6) ◽  
pp. 460-473 ◽  
Author(s):  
Francisco Javier Gallego

2021 ◽  
Author(s):  
Giovanni Marchisio ◽  
Patrick Helber ◽  
Benjamin Bischke ◽  
Tim Davis ◽  
Annett Wania

<p>New catalogues of nearly daily or even intraday temporal data will soon dominate the global archives. However, there has been little exploration of artificial intelligence (AI) techniques to leverage the high cadence that is already possible to achieve through the fusion of multiscale, multimodal sensors. Under the sponsorship of the European Union’s Horizon 2020 programme, RapidAI4EO will establish the foundations for the next generation of Copernicus Land Monitoring Service (CLMS) products. Focus is on the CORINE Land Cover programme, which is the flagship of CLMS. </p><p>Specific objectives of the project are to: 1) explore and stimulate the development of new spatiotemporal monitoring applications based on the latest advances in AI and Deep Learning (DL); 2) demonstrate the fusion of Copernicus high resolution satellite imagery and third party very high resolution imagery; 3) provide intensified monitoring of Land Use and Land Cover, and Land Use change at a much higher level of detail and temporal cadence than it is possible today. </p><p>Our strategy is two-fold. The first aspect involves developing vastly improved DL architectures to model the phenomenology inherent in high cadence observations with focus on disentangling phenology from structural change. The second involves providing critical training data to drive advancement in the Copernicus community and ecosystem well beyond the lifetime of this project. To this end we will create the most complete and dense spatiotemporal training sets ever, combining Sentinel-2 with daily, harmonized, cloud-free, gap filled, multispectral 3m time series resulting from fusion of open satellite data with Planet imagery at as many as 500,000 patch locations over Europe. The daily time series will span the entire year 2018, to coincide with the latest release of CORINE. We plan to open source these datasets for the benefit of the entire remote sensing community.</p><p>This talk focuses on the description of the datasets whose inspirations comes from the recently released EuroSAT (Helbert et al, 2019) and BigEarthNet corpora (Sumbul et al, 2019). The new corpora will look at the intersection of CORINE 2018 with all the countries in the EU, balancing relative country surface with relative LULC distribution and most notably adding the daily high resolution time series at all locations for the year 2018. Annotations will be based on the CORINE ontology. The higher spatial resolution will support modeling of more LC classes, while the added  temporal dimension should enable disambiguation of land covers across diverse climate zones, as well as an improved understanding of land use.</p><p>This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101004356.</p>


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Raphaël d’Andrimont ◽  
Momchil Yordanov ◽  
Laura Martinez-Sanchez ◽  
Beatrice Eiselt ◽  
Alessandra Palmieri ◽  
...  

Abstract Accurately characterizing land surface changes with Earth Observation requires geo-located ground truth. In the European Union (EU), a tri-annual surveyed sample of land cover and land use has been collected since 2006 under the Land Use/Cover Area frame Survey (LUCAS). A total of 1351293 observations at 651780 unique locations for 106 variables along with 5.4 million photos were collected during five LUCAS surveys. Until now, these data have never been harmonised into one database, limiting full exploitation of the information. This paper describes the LUCAS point sampling/surveying methodology, including collection of standard variables such as land cover, environmental parameters, and full resolution landscape and point photos, and then describes the harmonisation process. The resulting harmonised database is the most comprehensive in-situ dataset on land cover and use in the EU. The database is valuable for geo-spatial and statistical analysis of land use and land cover change. Furthermore, its potential to provide multi-temporal in-situ data will be enhanced by recent computational advances such as deep learning.


2021 ◽  
Vol 13 (3) ◽  
pp. 1119-1133
Author(s):  
Raphaël d'Andrimont ◽  
Astrid Verhegghen ◽  
Michele Meroni ◽  
Guido Lemoine ◽  
Peter Strobl ◽  
...  

Abstract. The Land Use/Cover Area frame Survey (LUCAS) is an evenly spaced in situ land cover and land use ground survey exercise that extends over the whole of the European Union. LUCAS was carried out in 2006, 2009, 2012, 2015, and 2018. A new LUCAS module specifically tailored to Earth observation (EO) was introduced in 2018: the LUCAS Copernicus module. The module surveys the land cover extent up to 51 m in four cardinal directions around a point of observation, offering in situ data compatible with the spatial resolution of high-resolution sensors. However, the use of the Copernicus module being marginal, the goal of the paper is to facilitate its uptake by the EO community. First, the paper summarizes the LUCAS Copernicus protocol to collect homogeneous land cover on a surface area of up to 0.52 ha. Secondly, it proposes a methodology to create a ready-to-use dataset for Earth observation land cover and land use applications with high-resolution satellite imagery. As a result, a total of 63 364 LUCAS points distributed over 26 level-2 land cover classes were surveyed on the ground. Using homogeneous extent information in the four cardinal directions, a polygon was delineated for each of these points. Through geospatial analysis and by semantically linking the LUCAS core and Copernicus module land cover observations, 58 426 polygons are provided with level-3 land cover (66 specific classes including crop type) and land use (38 classes) information as inherited from the LUCAS core observation. The open-access dataset supplied with this paper (https://doi.org/10.6084/m9.figshare.12382667.v4 d'Andrimont, 2020) provides a unique opportunity to train and validate decametric sensor-based products such as those obtained from the Copernicus Sentinel-1 and Sentinel-2 satellites. A follow-up of the LUCAS Copernicus module is already planned for 2022. In 2022, a simplified version of the LUCAS Copernicus module will be carried out on 150 000 LUCAS points for which in situ surveying is planned. This guarantees a continuity in the effort to find synergies between statistical in situ surveying and the need to collect in situ data relevant for Earth observation in the European Union.


2020 ◽  
Author(s):  
Raphaël d'Andrimont ◽  
Astrid Verhegghen ◽  
Michele Meroni ◽  
Guido Lemoine ◽  
Peter Strobl ◽  
...  

Abstract. The Land Use/Cover Area frame Survey (LUCAS) is a regular in-situ land cover and land use ground survey exercise that extends over the whole of the European Union. LUCAS was carried out in 2006, 2009, 2012, 2015, and 2018. A new LUCAS module specifically tailored to Earth Observation was introduced in 2018: the LUCAS Copernicus module, aiming at surveying land cover extent up to 51 meters in four cardinal directions around a point of observation. This paper first summarizes the LUCAS Copernicus protocol to collect homogeneous land cover on a surface area of up to a 0.52 ha. Secondly, it proposes a methodology to create a ready-to-use dataset for Earth Observation land cover and land use applications with high resolution satellite imagery. As a result, a total of 63,364 LUCAS points distributed over 26 level-2 land cover classes were surveyed on the ground. Using homogeneous extent information in the four cardinal direction, a polygon was delineated for each of such point. Through geo-spatial analysis and by semantically linking the LUCAS core and Copernicus land cover observations, 58,428 polygons are provided with a level-3 land cover (66 specific classes including crop type) and land use (38 classes) information as inherited from the LUCAS core observation. The open-access dataset supplied with this manuscript (https://doi.org/10.6084/m9.figshare.12382667.v3) provides a unique opportunity to train and validate decametric sensor-based products such as those obtained from the Copernicus Sentinel-1 and -2 satellites. A follow-up of the LUCAS Copernicus module is already planned for 2022. In 2022, a simplified version of the LUCAS Copernicus module will be carried out on 150,000 LUCAS points for which in-situ surveying is planned. This guarantees a continuity in the effort to find synergies between statistical in-situ surveying and the need to collect in-situ data relevant for Earth Observation in the European Union.


Sign in / Sign up

Export Citation Format

Share Document