scholarly journals Plant polyphenols: How to translate their in vitro antioxidant actions to in vivo conditions

IUBMB Life ◽  
2007 ◽  
Vol 59 (4) ◽  
pp. 308-315 ◽  
Author(s):  
Cesar G. Fraga
Keyword(s):  
2016 ◽  
Vol 7 (3) ◽  
pp. 1501-1507 ◽  
Author(s):  
Bin Xue ◽  
Jinli Xie ◽  
Jiachen Huang ◽  
Long Chen ◽  
Lijuan Gao ◽  
...  

This study investigated the effect of plant polyphenols on faecal microbiota metabolizing oligosaccharides. The results show that plant polyphenols can change the pathway of degrading FOS or even energy metabolism in vivo by altering gut microbiota composition.


2021 ◽  
Vol 939 (1) ◽  
pp. 012080
Author(s):  
S Ahmedova ◽  
M Asrarov

Abstract This study investigated in vivo and in vitro the effects of helmar 2 polyphenol extracts isolated from the plant Helichrysum maracandicum in the conditions of toxic hepatitis poisoned by carbon dioxide (CCl4) in rats. The experiments were performed on healthy male rats and grouped hepatitis model animals with CCl4. In toxic hepatitis, helmar 2 polyphenol extracts at a dose of 20 mg/kg showed an inhibitory effect on hepatic mitochondrial lipid peroxidation. Evidently, the inhibitory effect of polyphenol extracts on the peroxidation of hepatic mitochondrial lipids was very close to that of the hepatoprotective drug silymarin.


2009 ◽  
Vol 56 (3) ◽  
Author(s):  
Lidia Gebicka ◽  
Ewa Banasiak

The ferryl derivatives of hemoglobin are products of the reactions of oxy- and methemoglobin with hydrogen peroxide. Ferryl hemoglobins, either with or without a radical site on the protein moiety, are oxidizing species. Plant polyphenols, flavonoids, have been shown to act as antioxidants in vivo and in vitro. Reactions of met- and oxyhemoglobin with hydrogen peroxide in the presence of catechin, quercetin and rutin were studied. These flavonoids accelerated reduction of ferryl hemoglobin to methemoglobin. The rate constants of the reactions of ferryl hemoglobin with catechin, quercetin and rutin were in the order of 10(2) M(-1) s(-1), i.e. similar to the rate constants of ferryl hemoglobin with intracellular reducing compounds like urate or ascorbate. The beneficial effect of flavonoids against oxidative damage of hemoglobin caused by hydroperoxides, reported in the literature, is probably, at least in part, connected with the ability of flavonoids to scavenge ferryl hemoglobin.


2020 ◽  
Vol 16 ◽  
Author(s):  
Eugenia Dumitra Teodor ◽  
Oana Ungureanu ◽  
Veronica Moroeanu ◽  
Gabriel Lucian Radu

Abstract:: There is an emerging interest for plant polyphenols as dietary ingredients, particularly in digestive disorders and/or as antitumor agents. The plant compounds or extracts continue to be an alternative to drug use, many studies being aimed to find natural substances with selective cytotoxicity on abnormal cells. Phenolic compounds as important secondary metabolites from plants are intensively studied as substitute of drugs. In this review, the recent literature data from past five years about potential anticancer/antitumor effect of some categories of phenolics such as stilbenes and xanthones extracted from medicinal plants are surveyed. The most important results concerning the effectiveness as antitumor/anticancer agents of these active compounds, as isolated compounds or as plant extracts, some bioavailability aspects and their mechanism of action in vitro and in vivo were considered.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Conly L. Rieder ◽  
S. Bowser ◽  
R. Nowogrodzki ◽  
K. Ross ◽  
G. Sluder

Eggs have long been a favorite material for studying the mechanism of karyokinesis in-vivo and in-vitro. They can be obtained in great numbers and, when fertilized, divide synchronously over many cell cycles. However, they are not considered to be a practical system for ultrastructural studies on the mitotic apparatus (MA) for several reasons, the most obvious of which is that sectioning them is a formidable task: over 1000 ultra-thin sections need to be cut from a single 80-100 μm diameter egg and of these sections only a small percentage will contain the area or structure of interest. Thus it is difficult and time consuming to obtain reliable ultrastructural data concerning the MA of eggs; and when it is obtained it is necessarily based on a small sample size.We have recently developed a procedure which will facilitate many studies concerned with the ultrastructure of the MA in eggs. It is based on the availability of biological HVEM's and on the observation that 0.25 μm thick serial sections can be screened at high resolution for content (after mounting on slot grids and staining with uranyl and lead) by phase contrast light microscopy (LM; Figs 1-2).


Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


Sign in / Sign up

Export Citation Format

Share Document