Modulation of hexavalent chromium-induced genotoxic damage in peripheral blood of mice by epigallocatechin-3-gallate (EGCG) and its relationship to the apoptotic activity

2015 ◽  
Vol 79 (1) ◽  
pp. 28-38 ◽  
Author(s):  
María del Carmen García-Rodríguez ◽  
Ana Rosa Montaño-Rodríguez ◽  
Mario Agustín Altamirano-Lozano
2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
María del Carmen García-Rodríguez ◽  
Megumi Monserrat Carvente-Juárez ◽  
Mario Agustín Altamirano-Lozano

This study was conducted to investigate the modulating effects of green tea polyphenols on genotoxic damage and apoptotic activity induced by hexavalent chromium [Cr (VI)] in CD-1 mice. Animals were divided into the following groups: (i) injected with vehicle; (ii) treated with green tea polyphenols (30 mg/kg) via gavage; (iii) injected with CrO3(20 mg/kg) intraperitoneally; (iv) treated with green tea polyphenols in addition to CrO3. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCEs) obtained from peripheral blood at 0, 24, 48, and 72 h after treatment. Induction of apoptosis and cell viability were assessed by differential acridine orange/ethidium bromide (AO/EB) staining. Treatment of green tea polyphenols led to no significant changes in the MN-PCEs. However, CrO3treatment significantly increased MN-PCEs at 24 and 48 h after injection. Green tea polyphenols treatment prior to CrO3injection led to a decrease in MN-PCEs compared to the group treated with CrO3only. The average of apoptotic cells was increased at 48 h after treatment compared to control mice, suggesting that apoptosis could contribute to eliminate the DNA damaged cells induced by Cr (VI). Our findings support the proposed protective effects of green tea polyphenols against the genotoxic damage induced by Cr (VI).


2020 ◽  
Vol 18 (3) ◽  
pp. 367-389
Author(s):  
Natalia V. Eremina ◽  
Andrey D. Durnev

It is generally recognized that genotoxic damage have essential etiopathogenetic significance, and its prevention is an important measure to preserve human life and health. In the framework of this concept, literature information on studies of genotoxic biomarkers in patients with various hemodialysis regiments has been reviewed and summarized, and ways to prevent detectable genotoxicity have been identified. Based on the analysis of the known data, it was concluded that patients of this group have an increased level of DNA and chromosome damage in peripheral blood lymphocytes. Based on the results of individual studies, it was shown that one of the strategies for reducing genotoxicity may be the improvement of hemodialysis therapy methods and regimes, as well as pharmacological and nutritional correction of genotoxic effects.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 658 ◽  
Author(s):  
Gabriela Gajek ◽  
Beata Marciniak ◽  
Jarosław Lewkowski ◽  
Renata Kontek

The incidence of gastrointestinal cancers is increasing every year. Irinotecan (CPT-11), a drug used in the treatment of colorectal cancer and gastric cancer, is metabolized by carboxylesterases to an active metabolite, SN-38, which is more cytotoxic. CAPE (caffeic acid phenethyl ester) is an active component of propolis, which has a high antibacterial, antiviral, and antineoplastic potential. This study analyses the impact of CAPE on the cytotoxic (MTT assay), genotoxic (comet assay) and proapoptotic (caspase-3/7 activity) potential of irinotecan and its metabolite SN-38 in cultures of gastrointestinal neoplastic cells (HCT116, HT29, AGS). Cytotoxicity and genotoxicity activities of these compounds were carried out in comparison with human peripheral blood lymphocytes (PBLs) in vitro. The antioxidant potential of CAPE was investigated in relation H2O2-induced oxidative stress in the both neoplastic cells and PBLs. CAPE expressed cytotoxic, genotoxic, and pro-apoptotic activity against AGS, HCT116, and HT29 tumor cells. CAPE, in the presence of different concentrations of irinotecan or SN38, decreased the cytotoxicity, genotoxicity, and pro-apoptotic activity in these cell lines, but it has no such action on normal human peripheral blood lymphocytes.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
S. Ortega-Gutiérrez ◽  
M. López-Vicente ◽  
F. Lostalé ◽  
L. Fuentes-Broto ◽  
E. Martínez-Ballarín ◽  
...  

Mitomycin C (MMC) generates free radicals when metabolized. We investigated the effect of melatonin against MMC-induced genotoxicity in polychromatic erythrocytes and MMC-induced lipid peroxidation in brain and liver homogenates. Rats (N= 36) were classified into 4 groups: control, melatonin, MMC, and MMC + melatonin. Melatonin and MMC doses of 10 mg/kg and 2 mg/kg, respectively, were injected intraperitoneally. Peripheral blood samples were collected at 0, 24, 48, 72, and 96 hours posttreatment and homogenates were obtained at 96 hours posttreatment. The number of micronucleated polychromatic erythrocytes (MN-PCE) per 1000 PCE was used as a genotoxic marker. Malondialdehyde (MDA) plus 4-hydroxyalkenal (4-HDA) levels were used as an index of lipid peroxidation. The MMC group showed a significant increase in MN-PCE at 24, 48, 72, and 96 hours that was significantly reduced with melatonin begin coadministrated. No significant differences were found in lipid peroxidation. Our results indicate that MMC-induced genotoxicity can be reduced by melatonin.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2096
Author(s):  
Idalia Yazmin Castañeda-Yslas ◽  
Olivia Torres-Bugarín ◽  
Juan Carlos García-Ramos ◽  
Yanis Toledano-Magaña ◽  
Patricia Radilla-Chávez ◽  
...  

Silver nanoparticles (AgNPs) have been studied worldwide for their potential biomedical applications. Specifically, they are proposed as a novel alternative for cancer treatment. However, the determination of their cytotoxic and genotoxic effects continues to limit their application. The commercially available silver nanoparticle Argovit™ has shown antineoplastic, antiviral, antibacterial, and tissue regenerative properties, activities triggered by its capacity to promote the overproduction of reactive oxygen species (ROS). Therefore, in this work, we evaluated the genotoxic and cytotoxic potential of the Argovit™ formulation (average size: 35 nm) on BALB/c mice using the micronucleus in a peripheral blood erythrocytes model. Besides, we evaluated the capability of AgNPs to modulate the genotoxic effect induced by cyclophosphamide (CP) after the administration of the oncologic agent. To achieve this, 5–6-week-old male mice with a mean weight of 20.11 ± 2.38 g were treated with water as negative control (Group 1), an single intraperitoneal dose of CP (50 mg/kg of body weight, Group 2), a daily oral dose of AgNPs (6 mg/kg of weight, Group 3) for three consecutive days, or a combination of these treatment schemes: one day of CP doses (50 mg/kg of body weight) followed by three doses of AgNPs (one dose per day, Group 4) and three alternate doses of CP and AgNPs (six days of exposure, Group 5). Blood samples were taken just before the first administration (0 h) and every 24 h for seven days. Our results show that Argovit™ AgNPs induced no significant cytotoxic or acute genotoxic damage. The observed cumulative genotoxic damage in this model could be caused by the accumulation of AgNPs due to administered consecutive doses. Furthermore, the administration of AgNPs after 24 h of CP seems to have a protective effect on bone marrow and reduces by up to 50% the acute genotoxic damage induced by CP. However, this protection is not enough to counteract several doses of CP. To our knowledge, this is the first time that the exceptional chemoprotective capacity produced by a non-cytotoxic silver nanoparticle formulation against CP genotoxic damage has been reported. These findings raise the possibility of using AgNPs as an adjuvant agent with current treatments, reducing adverse effects.


2003 ◽  
Vol 2 (2) ◽  
pp. 38-43
Author(s):  
I. I. Ivanchuk ◽  
A. E. Sazonov ◽  
F. I. Petrovsky ◽  
I. S. Lescheva ◽  
A. P. Kopieva ◽  
...  

Investigations of the mRNA expression of apoptosis intracellular regulators, bcl-2 and bcl-xL antagonists and bax, bcl-xL agonists of cellular destruction as well as mRNA expression of IL-5 were carried out. As a result of investigation of potential role of IL-5 in the regulation of programmable bcl-2-dependent destruction we found the increase of vitality and mRNA expression stimulation of bcl-2 peripheral blood eosinophils in patients with bronchial asthma (BA). It was found that fresh-isolated peripheral blood eosinophils in all investigated groups expressed bax and bcl-xL mRNA, bcl-xS had the less activity. In peripheric blood eosinophils of healthy donors the bcl-2 expression was not found, however, the increase of mRNA expression by IL-5 was shown in group of patients with bronchial asthma and, possibly connected with this, the appearance of bcl-2 activity. Thus, the decrease of apoptotic activity in peripheral blood eosinophils in patients with bronchial asthma may lead to the increase of eosinophil portion that is subjected to necrotic destruction and this may significantly contribute into bronchial asthma pathogenesis.


2021 ◽  
Author(s):  
Tonancy Nicolás-Méndez ◽  
Sam Kacew ◽  
Alda Rocío Ortiz-Muñiz ◽  
Víctor Manuel Mendoza-Núñez ◽  
María del Carmen García-Rodríguez

Abstract It is well-established that exposure to hexavalent chromium [Cr(VI)] induces genotoxic damage. The aim of this study was to examine the ability of resveratrol to counteract hexavalent chromium [Cr(VI)]-induced genetic damage, as well as possible pathways that may be associated with this protection. Hsd:ICR male mice were divided into groups of 5 each and treated as follows: a) control 1, distilled water; b) control 2, ethanol 30%; c) resveratrol, 50 mg/kg by gavage; d) CrO3, 20 mg/kg intraperitoneally; and e) resveratrol in addition to CrO3 (resveratrol+CrO3), with resveratrol administered 4 hr prior to CrO3. The frequency of micronuclei (MN) and cytotoxicity were measured in peripheral blood at 0, 24, 48 and 72 hr, while 8-hydroxydeoxyguanosine (8-OHdG, 7,8-dihydro-8-oxodeoxyguanosine) adduct repair levels, endogenous antioxidant system biomarkers and apoptosis at 48 hr after treatments. Resveratrol administration increased activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). CrO3 treatment elevated GPx and CAT activities. Resveratrol reduced the frequency of Cr(VI)-induced rise in MN and without significant effect on levels of 8-OHdG adduct when administered alone, suggesting that this polyphenol-mediated cellular repair does not involve 8-OHdG adduct formation. Concomitant administration of resveratrol and Cr(VI)-resulted in return of activities of SOD, GPx and CAT to control levels accompanied by decreased glutathione levels suggesting that the endogenous antioxidant system might play an important role in resveratrol-mediated inhibition of Cr(VI)-induced oxidant toxicity. The increase in apoptotic cell number in resveratrol+CrO3 group as well as diminished necrosis further affirms that resveratrol effectively blocked the actions of Cr(VI).


Sign in / Sign up

Export Citation Format

Share Document