Combating Climate Change through Improved Agronomic Practices and Input-Use Efficiency

2014 ◽  
Vol 28 (5) ◽  
pp. 575-618 ◽  
Author(s):  
Robert Norton
Author(s):  
M. Sharath Chandra ◽  
R. K. Naresh ◽  
S. S. Dhaliwal ◽  
Pradeep Rajput ◽  
Jana Harish ◽  
...  

Agriculture is a major contributor to India's environmental footprint, particularly through greenhouse gas (GHG) emissions. Sustainable agricultural systems are needed to produce high-quality and affordable food in sufficient quantity to meet the growing population need for food, feed, and fuel, and at the same time, farming systems must have a low impact on the environment. Achieving sustainability of the cereal system in the Indo-Gangetic Plains (IGP) of North West India under progressive climate change and variability necessitates adoption of practices and technologies that increase food production, adaptation and mitigation the environmental footprints of production in a sustainable way. But production is becoming unsustainable due to depletion or degradation of soil and water resources, rising production costs, decreasing input use efficiency, and increasing environmental pollution. In contrast, cereal production systems in the IGP are largely traditional, with low yields and farm income. This review paper mainly focus on the reduction of environmental footprint production in cereal systems such as greenhouse gas (GHG) emissions through the adoption of emerging conservation agricultural practices i.e., re-designing energy-efficient, economically sustainable and intensively managed options for cereal systems. Adoption of re-designing energy-efficient, economically sustainable and intensively managed cereal systems could help in reducing the environmental footprints of production (EFP) while maintaining productivity and better resource utilization. In India could reduce its greenhouse gas emissions from agriculture by almost 18 percent through the adoption of mitigation measures. Several studies revealed that conservation agriculture (CA) practices and technologies implemented in the cereal systems of the IGP have positive impacts on crop yields, returns from crop cultivation, input use efficiency (water, nutrient and energy), adaptation to heat stress and reduction of GHGs emissions. Improved conservation technologies or packages of practices from intensive agriculture that reduce environmental impacts, such as laser-aided land leveling, reduced or zero tillage, conservation tillage operation, precise nutrient and water management, crop residues management, crop diversification improves resource use efficiency by decreasing losses of inputs to the surrounding environment. It indicates that the adoption of better soil, water, nutrient management practices, and technologies has enormous potential to reduce environmental foot print, such as GHG emissions from agriculture cereal systems, thereby contributing to the mitigation of climate change.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1218
Author(s):  
Michael A. Kock

Plant related innovations are critical to enable of food security and mitigate climate change. New breeding technologies (NBTs) based on emerging genome editing technologies like CRISPR/Cas will facilitate “breeding-by-editing” and enable complex breeding targets—like climate resilience or water use efficiency—in shorter time and at lower costs. However, NBTs will also lead to an unprecedented patent complexity. This paper discusses implications and potential solutions for open innovation models.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 600
Author(s):  
Shahjahan Ali ◽  
Bikash Chandra Ghosh ◽  
Ataul Gani Osmani ◽  
Elias Hossain ◽  
Csaba Fogarassy

A lack of adaptive capacities for climate change prevents poor farmers from diversifying agricultural production in Bangladesh’s drought-resilient areas. Climate change adaptation strategies can reduce the production risk relating to unforeseen climatic shocks and increase farmers’ food, income, and livelihood security. This paper investigates rice farmers’ adaptive capacities to adapt climate change strategies to reduce the rice production risk. The study collected 400 farm-level micro-data of rice farmers with the direct cooperation of Rajshahi District. The survey was conducted during periods between June and July of 2020. Rice farmers’ adaptive capacities were estimated quantitatively by categorizing the farmers as high, moderate, and low level adapters to climate change adaptation strategies. In this study, a Cobb–Douglas production function was used to measure the effects of farmers’ adaptive capacities on rice production. The obtained results show that farmers are moderately adaptive in terms of adaptation strategies on climate change and the degree of adaptation capacities. Agronomic practices such as the quantity of fertilizer used, the amount of labor, the farm’s size, and extension contacts have a substantial impact on rice production. This study recommends that a farmer more significantly adjusts to adaptation strategies on climate change to reduce rice production. These strategies will help farmers to reduce the risk and produce higher quality rice. Consequently, rice farmers should facilitate better extension services and change the present agronomic practice to attain a higher adaptation status. It can be very clearly seen that low adaptability results in lower rice yields.


Hydrology ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 75
Author(s):  
Victor Hugo Ramírez-Builes ◽  
Jürgen Küsters

Coffee (Coffea spp.) represents one of the most important sources of income and goods for the agricultural sector in Central America, Colombia, and the Caribbean region. The sustainability of coffee production at the global and regional scale is under threat by climate change, with a major risk of losing near to 50% of today’s suitable area for coffee by 2050. Rain-fed coffee production dominates in the region, and under increasing climate variability and climate change impacts, these production areas are under threat due to air temperature increase and changes in rainfall patterns and volumes. Identification, evaluation, and implementation of adaptation strategies for growers to cope with climate variability and change impacts are relevant and high priority. Incremental adaptation strategies, including proper soil and water management, contribute to improved water use efficiency (WUE) and should be the first line of action to adapt the coffee crop to the changing growing conditions. This research’s objective was to evaluate at field level over five years the influence of fertilization with calcium (Ca+2) and potassium (K+) on WUE in two coffee arabica varieties: cv. Castillo and cv. Caturra. Castillo has resistance against coffee leaf rust (CLR) (Hemileia vastatrix Verkeley and Brome), while Caturra is not CLR-resistant. WUE was influenced by yield changes during the years by climate variability due to El Niño–ENSO conditions and CLR incidence. Application of Ca+2 and K+ improved the WUE under such variable conditions. The highest WUE values were obtained with an application of 100 kg CaO ha−1 year−1 and between 180 to 230 kg K2O ha−1 year−1. The results indicate that adequate nutrition with Ca+2 and K+ can improve WUE in the long-term, even underwater deficit conditions and after the substantial incidence. Hence, an optimum application of Ca+2 and K+ in rain-fed coffee plantations can be regarded as an effective strategy to adapt to climate variability and climate change.


The study examined the impact of minor irrigation on agricultural production and evaluated the gap between IPC and IPU in the Keonjhar district of Odisha. For this rationale, data were collected from 210 farm households through the primary survey. In support of the analysis, the Cobb Douglas model and factor analysis were used. The results revealed that the input use efficiency had a positive and significant impact on paddy production the most in all the MIPs regions compared to the other crops. However, the study indicated that insufficient water availability was the major cause behind the gap between irrigation potential created and utilised. Thus, minor irrigation played a crucial role in enhancing agricultural production in hilly regions. With the enthusiastic participation of planners, effective working of Pani Panchayats, canals, and upstream control, NGOs' involvement can achieve selfsufficiency in agricultural production by encouraging minor irrigation projects in the hilly province.


2014 ◽  
Vol 32 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Miguel Ángel Lopez M. ◽  
Bernardo Chaves C. ◽  
Víctor Julio Flórez R.

The cut flower business requires exact synchronicity between product offer and demand in consumer countries. Having tools that help to improve this synchronicity through predictions or crop growth monitoring could provide an important advantage to program standards and corrective agronomic practices. At the Centro de Biotecnología Agropecuaria, SENA (SENA's Biotechnology, Agricultural and Livestock Center), located in Mosquera, Cundinamarca, a trial with standard carnation cv. Delphi grown under greenhouse conditions was carried out. The objective of this study was to build a simple model of dry matter (DM) production and partition of on-carnation flower stems. The model was based on the photosynthetically active radiation (PAR) MJ m-2 d-1 and temperature as exogenous variables and assumed no water or nutrient limitations or damage caused by pests, disease or weeds. In this model, the daily DM increase depended on the PAR, the light fraction intercepted by the foliage (FLINT) and the light use efficiency (LUE) g MJ-1. The LUE in the vegetative and reproductive stages reached values of 1.31 and 0.74 g MJ-1, respectively. The estimated extinction coefficient (k) value corresponded to 0.53 and the maximum FLINT was between 0.79 and 0.82. Partitioning between the plant vegetative and reproductive stages was modeled based on the hypothesis that the partition is regulated by the source sink relationship. The estimated partition coefficient for the vegetative stage of the leaves was 0.63 and 0.37 for the stems. During the reproductive stage, the partitioning coefficients of leaves, stems and flower buds were 0.05, 0.74, and 0.21, respectively.


2021 ◽  
Vol 40 (2) ◽  
pp. 89
Author(s):  
Rivandi Pranandita Putra ◽  
Nindya Arini ◽  
Muhammad Rasyid Ridla Ranomahera

<p>Sugar is one of Indonesia’s strategic commodities, but its production fluctuates over time and is still unable to comply with the national sugar demand. This condition may even get worst with climate change. Although climate-smart agriculture is a promising thing, it is basically a genuine concept for many farmers in Indonesia, including sugarcane growers. The paper briefly reviews and argues agronomic practices as a climate-smart agriculture approach adapted by sugarcane growers in Indonesia to increase its production under the changing climate. Some agronomic practices can be adopted by the Indonesian sugarcane growers as climate-smart agriculture, i.e., efficient irrigation, improved drainage of sugarcane plantations, the use of suitable sugarcane cultivars, green cane harvesting-trash blanketing, the amendment of soil organic matter, crop diversification, precision agriculture, and integrated pest management. From the Indonesian government’s side, research should be propped as there is limited information about the effectiveness of each aforementioned agronomic intervention to alleviating the adverse effect of climate change and to improving sugarcane growth. Practically, to ensure the success of climate-smart agriculture implementation in the Indonesian sugar industry, multistakeholders, i.e., sugarcane growers, researchers, civil society, and policymakers, should be involved, and the government needs to link these stakeholders.</p><p>Keywords: Sugarcane, productivity, climate-smart agriculture, agronomic management, precision agriculture</p><p> </p><p><strong>Abstrak</strong></p><p><strong>Implementasi Pertanian Cerdas Iklim untuk Meningkatkan Produktivitas Tebu di Indonesia</strong></p><p>Gula merupakan salah satu komoditas strategis Indonesia, namun produksinya mengalami fluktuasi dan belum dapat memenuhi kebutuhan gula nasional. Kondisi ini diperburuk oleh perubahan iklim. Pertanian cerdas iklim memberikan peluang besar bagi tanaman tebu untuk dapat beradaptasi dan memitigasi dampak perubahan iklim. Meskipun pertanian cerdas iklim menjanjikan, namun merupakan hal baru bagi banyak petani di Indonesia, termasuk petani tebu. Tulisan ini menelaah dan mengemukakan praktek agronomi sebagai pendekatan pertanian cerdas iklim yang dapat diterapkan petani tebu di Indonesia dengan tujuan meningkatkan produksi tebu di bawah kondisi perubahan iklim. Terdapat beberapa praktik agronomis sebagai bagian dari pertanian cerdas iklim yang dapat diadopsi petani tebu di Indonesia, seperti efisiensi irigasi, perbaikan sistem drainase, pemilihan kultivar tebu yang sesuai, pemanfaatan residu serasah tebu, peningkatan bahan organik tanah, diversifikasi tanaman, pertanian presisi, dan pengelolaan hama terpadu. Dari perspektif pemerintah Indonesia, penelitian harus didukung karena terbatasnya informasi efektivitas masing-masing intervensi agronomi tersebut untuk mengurangi dampak buruk perubahan iklim dan untuk meningkatkan pertumbuhan tebu. Secara praktis, untuk memastikan keberhasilan penerapan pertanian cerdas iklim pada industri gula Indonesia, multi-stakeholder yang terdiri atas petani tebu, peneliti, masyarakat sipil, dan pembuat kebijakan harus saling terlibat dan pemerintah perlu menghubungkan para pemangku kepentingan ini.</p><p>Kata kunci: Tebu, produktivitas, pertanian cerdas iklim, manajemen agronomis, pertanian presisi</p>


Sign in / Sign up

Export Citation Format

Share Document