scholarly journals Age-related Changes in p56lckProtein Levels and Phenotypic Distribution of T Lymphocytes in Young Rats

2005 ◽  
Vol 12 (1) ◽  
pp. 75-84 ◽  
Author(s):  
Heather J. Hosea ◽  
Edward S. Rector ◽  
Carla G. Taylor

p56lckis involved in the maturation of T-cells from double negative (DN) into double positive (DP) T-cells. The objective of this experiment was to determine changes in the levels of thymic and splenic T-cell p56lckusing Western immunoblotting, along with the proportion and number of T-cell subsets in thymus, spleen and blood using flow cytometry in growing Sprague-Dawley rats. Thymic p56lcklevels were negatively correlated with age (r=-0.42,p=0.04) and positively correlated with age in the spleen (r=0.50,p=0.01). Nine-week-old rats had a higher percentage of thymic DN and CD8 cells with fewer DP cells compared to younger rats. There were minor differences in the proportions of T-cell subsets in the spleen and blood. T-cell numbers remained proportional to body weight in the lymphoid organs; however, the lower absolute number of T-cells in the younger rats might indicate that they are less able to respond to antigens.

Author(s):  
Bharat Thyagarajan ◽  
Jessica Faul ◽  
Sithara Vivek ◽  
Jung Ki Kim ◽  
Janko Nikolich-Žugich ◽  
...  

Abstract Though T cell immunosenescence is a major risk factor for age-related diseases, susceptibility to infections, and responses to vaccines, differences in T cells subset counts and representation by age and sex have not been determined for a large sample representative of the national population of the US. We evaluated the counts of T cell subsets including total, CD4+ and CD8+ T cells, and their naïve (Tn), effector memory (Tem) and effector subsets, in the context of age, sex and exposure to cytomegalovirus (CMV) infection among 8,848 Health and Retirement Study (HRS) participants, a nationally representative study of adults over 55 years. Total T cells (CD3+) and CD4+ cells declined markedly with age; CD8+ T cells declined somewhat less. While CD4+ T cell declines with age occurred for both CMV seropositive and CMV seronegative groups, total T cells and CD8+ cells were both substantially higher among the CMV seropositive group. Numbers of Tn CD4+ and CD8+ cells were strongly and inversely related to age, were better conserved among women, and were independent of CMV seropositivity. By contrast, accumulation of the CD8+ and CD4+ Tem and effector subsets was CMV-associated. This is the first study to provide counts of T cell subsets by age and sex in a national sample of older US adults over the age of 55 years. Understanding T cell changes with age and sex is an important first step in determining strategies to reduce its impact on age-related diseases and susceptibility to infection.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A586-A586
Author(s):  
Sara Schad ◽  
Andrew Chow ◽  
Heng Pan ◽  
Levi Mangarin ◽  
Roberta Zappasodi ◽  
...  

BackgroundCD4 and CD8 T cells are genetically and functionally distinct cell subsets of the adaptive immune system that play pivotal roles in immune surveillance and disease control. During development in the thymus, transcription factors ThPOK and Runx3 regulate the differentiation and maturation of these two lineages into single positive T cells that enter the periphery with mutually exclusive expression of either the CD4 or CD8 co-receptor.1–2 Despite our expectation that these two cell fates are fixed, mature CD4+CD8+ double positive (DP) T cells have been described in the context of numerous immunological responses, including cancer, but their molecular and functional properties and therapeutic relevance remain controversial and largely unknown.3–5MethodsOur lab has identified and characterized a heterogenous DP T cell population in murine and human melanoma tumors comprised of CD4 and CD8 T cells re-expressing the opposite co-receptor and a parallel uptake in the opposite cell type’s phenotype and function. Using CD4 (Trp1) and CD8 (Pmel) transgenic TCR T cells specific to B16 melanoma antigens gp75 and gp100 respectively, we demonstrate the re-expression of the opposite co-receptor following adoptive T cell transfer in B16 melanoma tumor bearing mice.ResultsSpecifically, up to 50% of transferred CD4 Trp1 T cells will re-express CD8 to become a DP T cell in the tumor microenvironment. Further, these CD4 derived DP T cells upregulate CD8 lineage regulator Runx3 and cytolytic genes Gzmb, Gzmk, and Prf1 to become potent cytotoxic T cells. Alternatively, a subset of CD8 Pmel T cells differentiate into DP T cells characterized by the increased expression of CD4, ThPOK, and regulatory marker FoxP3 (figure 1). In addition, we utilized 10x single cell and ATAC sequencing to further characterize these divergent DP T cell populations among open repertoire T cells isolated from murine and human melanoma tumors.ConclusionsOur findings highlight the capability of single positive T cells to differentiate in response to antigen and local stimuli into novel T cell subsets with polyfunctional characteristics. The resulting cell subsets will potentially affect the tumor microenvironment in distinct ways. Our studies may inform therapeutic approaches to identify antigen specific T cells as well as innovative signaling pathways to target when genetically engineering T cells to optimize cytotoxic function in the setting of adoptive cell therapy.Ethics ApprovalThe human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107ReferencesEllmeier W, Haust L & Tschismarov R. Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013;70:4537–4553.Luckey MA, et al. The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology 2014; 15, 638–645.Bohner P, et al. Double positive CD4(+)CD8(+) T Cells are enriched in urological cancers and favor T Helper-2 polarization. Front Immunol 2019; 10, 622.Nascimbeni M, Shin E-C, Chiriboga L, Kleiner DE & Rehermann B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004;104:478–486.Nishida K, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma. Int Immunol 2020;32:347–357.


1994 ◽  
Vol 14 (2) ◽  
pp. 1084-1094
Author(s):  
Z Hanna ◽  
C Simard ◽  
A Laperrière ◽  
P Jolicoeur

The CD4 protein plays a critical role in the development and function of the immune system. To gain more insight into the mechanism of expression of the human CD4 gene, we cloned 42.2 kbp of genomic sequences comprising the CD4 gene and its surrounding sequences. Studies with transgenic mice revealed that a 12.6-kbp fragment of the human CD4 gene (comprising 2.6 kbp of 5' sequences upstream of the transcription initiation site, the first two exons and introns, and part of exon 3) contains the sequences required to support the appropriate expression in murine mature CD4+ CD8- T cells and macrophages but not in immature double-positive CD4+ CD8+ T cells. Expression in CD4+ CD8+ T cells was found to require additional regulatory elements present in a T-cell enhancer fragment recently identified for the murine CD4 gene (S. Sawada and D. R. Littman, Mol. Cell. Biol. 11:5506-5515, 1991). These results suggest that expression of CD4 in mature and immature T-cell subsets may be controlled by distinct and independent regulatory elements. Alternatively, specific regulatory elements may control the expression of CD4 at different levels in mature and immature T-cell subsets. Our data also indicate that mouse macrophages contain the regulatory factors necessary to transcribe the human CD4 gene.


Author(s):  
Manman Dai ◽  
Li Zhao ◽  
Ziwei Li ◽  
Xiaobo Li ◽  
Bowen You ◽  
...  

It is well known that chicken CD8+ T cell response is vital to clearing viral infections. However, the differences between T cell subsets expressing CD8 receptors in chicken peripheral blood mononuclear cells (PBMCs) have not been compared. Herein, we used Smart-Seq2 scRNA-seq technology to characterize the difference of chicken CD8high+, CD8high αα+, CD8high αβ+, CD8medium+, and CD4+CD8low+ T cell subsets from PBMCs of avian leukosis virus subgroup J (ALV-J)-infected chickens. Weighted gene co-expression network analysis (WGCNA) and Trend analysis revealed that genes enriched in the “Cytokine–cytokine receptor interaction” pathway were most highly expressed in the CD8high αα+ T cell population, especially T cell activation or response-related genes including CD40LG, IL2RA, IL2RB, IL17A, IL1R1, TNFRSF25, and TNFRSF11, suggesting that CD8high αα+ T cells rather than other CD8 subpopulations were more responsive to ALV-J infections. On the other hand, genes involved in the “FoxO signaling pathway” and “TGF-beta signaling pathway” were most highly expressed in the CD4+CD8low+ (CD8low+) T cell population and the function of CD4+CD8low+ T cells may play roles in negatively regulating the functions of T cells based on the high expression of CCND1, ROCK1, FOXO1, FOXO3, TNFRSF18, and TNFRSF21. The selected gene expressions in CD8+ T cells and CD4+CD8low+ double-positive T cells confirmed by qRT-PCR matched the Smart-Seq2 data, indicating the reliability of the smart-seq results. The high expressions of Granzyme K, Granzyme A, and CCL5 indicated the positive response of CD8+ T cells. Conversely, CD4+CD8+ T cells may have the suppressor activity based on the low expression of activation molecules but high expression of T cell activity suppressor genes. These findings verified the heterogeneity and transcriptional differences of T cells expressing CD8 receptors in chicken PBMCs.


2019 ◽  
Vol 216 (7) ◽  
pp. 1682-1699 ◽  
Author(s):  
Lisa A. Mielke ◽  
Yang Liao ◽  
Ella Bridie Clemens ◽  
Matthew A. Firth ◽  
Brigette Duckworth ◽  
...  

Interleukin (IL)-17–producing CD8+ T (Tc17) cells have emerged as key players in host-microbiota interactions, infection, and cancer. The factors that drive their development, in contrast to interferon (IFN)-γ–producing effector CD8+ T cells, are not clear. Here we demonstrate that the transcription factor TCF-1 (Tcf7) regulates CD8+ T cell fate decisions in double-positive (DP) thymocytes through the sequential suppression of MAF and RORγt, in parallel with TCF-1–driven modulation of chromatin state. Ablation of TCF-1 resulted in enhanced Tc17 cell development and exposed a gene set signature to drive tissue repair and lipid metabolism, which was distinct from other CD8+ T cell subsets. IL-17–producing CD8+ T cells isolated from healthy humans were also distinct from CD8+IL-17− T cells and enriched in pathways driven by MAF and RORγt. Overall, our study reveals how TCF-1 exerts central control of T cell differentiation in the thymus by normally repressing Tc17 differentiation and promoting an effector fate outcome.


Blood ◽  
1989 ◽  
Vol 74 (2) ◽  
pp. 786-792 ◽  
Author(s):  
TH Totterman ◽  
M Carlsson ◽  
B Simonsson ◽  
M Bengtsson ◽  
K Nilsson

Abstract Two-color FACS analysis was used to study activated and “functional” T and natural killer (NK) cell subsets of circulating lymphocytes in 23 patients with B-type chronic lymphocytic leukemia (B-CLL) and in 30 healthy subjects. As compared with controls, B-CLL patients had increased absolute numbers of phenotypically activated, HLA-DR+ CD4+ and CD8+ cells and T suppressor/effector (CD11b+CD8+) cells. When patients in Rai stages II through IV (n = 11) were compared with cases in Rai stages O through I (n = 12), the former group of patients had higher numbers of activated CD4+ and CD8+ T cells and decreased levels of suppressor/effector T cells. The absolute numbers of T suppressor/inducer (CD45R+CD4+) cells were elevated in patients with stage O through I disease but within normal range in stage II through IV leukemia. We further showed that the absolute numbers of NK-like (CD16+) cells and their activated counterparts (DR+CD16+) are elevated in B-CLL patients as compared with healthy subjects. The comparison of relative T and NK subsets in the blood of patients and controls showed that the proportions of CD4+, CD8+, and CD16+ cells expressing the activation marker HLA-DR were increased in B-CLL. Furthermore, the percentage of T-suppressor/inducer (CD45R+) cells within the CD4+ population was decreased in the patients. The proportion of T- suppressor/effector (CD11b+) cells within the CD8+ subset was reduced in subjects with stage II-IV disease only. When stimulated in vitro with the T-cell-dependent inducer TPA, B-CLL cells from patients in Rai stages II through IV secreted larger amounts of IgM as compared with cells from stage O through I patients. A positive correlation was observed between the degree of phenotypic activation of CD4+ T-helper cells and their functional capacity to augment IgM secretion by autologous B-CLL cells. Our findings indicate a tumor cell-directed regulatory role of T cells (and possibly NK cells as well) in B-CLL. Furthermore, monitoring of phenotypically activated and functional T- cell subsets may be helpful in the prediction of disease progression and timing of therapy in B-CLL.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 2904-2904 ◽  
Author(s):  
R. Lowsky ◽  
K. Heydari ◽  
B. Sahaf ◽  
J. Shizuru ◽  
G. Laport ◽  
...  

Abstract Murine models of transplantation established that nonmyeloablative conditioning using repeated low doses of irradiation targeted to lymphoid tissues (TLI) and depletive anti-T cell antibodies protects against GVHD by skewing residual host T cell subsets to favor regulatory natural killer (NK) T cells that suppress GVHD by polarizing donor T cells toward secretion of non-inflammatory cytokines such as IL-4. We recently translated the murine protocol to a clinical study using non-myeloablative TLI and ATG host conditioning with HLA matched related and unrelated donors, and showed a marked reduction in the incidence of acute GVHD while retaining graft anti-tumor activity (Lowsky et al., in Press NEJM). Engrafted donor CD4+ T cells showed a marked increase in IL-4 production as compared to CD4+ T cells from controls. We now adapted the TLI and ATG nonmyeloablative host conditioning regimen to a clinical study of allogeneic HCT using haploidentical matched (3/6 HLA matched) related donors to determine if it will result in donor hematopoietic cell engraftment and also protect against acute GVHD. Blood derived hematopoietic progenitor cells were collected by apheresis from donors mobilized with G-CSF and the product was T cell depleted using CD34+ selection. CD3+ T cells were added back to the donor inoculum according to a dose escalation schedule. The initial T cell dose was 1 x105 CD3+ cell/kg with designated increments based on clinical outcomes of up to a maximum of 1 x107 CD3+ cells/kg. The desired CD34+ cell dose was >5 x 106 CD34+ cells/kg for all patients. Seven patients were transplanted; the median age was 53 years (range 27 to 61 years). Five patients had acute myelogenous leukemia, two with disease in remission and three not in remission at the start of TLI and ATG, one with myelodysplastic syndrome, and one with progressive peripheral T cell lymphoma. The median follow-up for all patients is 265 days with three of seven patients alive and free of disease at the last observation period. Sustained donor hematopoietic cell engraftment was achieved in three of three patients only after the T cell dose was increased to 1 x107 CD3+ cells/kg. No patient developed acute GVHD. None of the three patients receiving the highest dose of T cells had any invasive fungal or viral infections. Monitoring of sorted host T cell subsets before TLI and ATG, and immediately after but before the infusion of donor cells, revealed in five of five patients a highly significant skewing of residual host T cells favoring invariant NK T (CD3+ CD161hi Va24 +Vb11 +) cells. The mean absolute number of host CD3+, and CD4+ and CD8+ T cells decreased by 99, 163 and 121 fold, respectively, immediately after conditioning compared to the absolute numbers before the start of TLI and ATG, whereas the mean absolute number of invariant NK T cells decreased by only 11%. In conclusion, we have determined the conditions for successful hematopoietic cell engraftment using a non-myeloablative regimen of TLI and ATG that appears associated with a reduced aGVHD risk yet retained graft anti-tumor activity. As in the pre-clinical model, we show direct evidence that the low incidence of aGVHD is associated with a significant alteration in residual host T cell subsets markedly favoring invariant NK T cells.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3313-3313
Author(s):  
J. Joseph Melenhorst ◽  
Josette Zeilah ◽  
Edgardo Sosa ◽  
Dean Follmann ◽  
Nancy F. Hensel ◽  
...  

Abstract Human T cell development occurs in two waves of development and proliferation: first, early T cells expressing the TCRb chain but not the α-chain are selected for functional TCRβ protein independent of HLA recognition, a process called β-selection; second, thymocytes expressing both the α- and β-TCR are selected for intermediate affinity for self-MHC/ self-peptide complex. This latter process is referred to as positive selection. We sought to determine whether the peripheral TCRVβ frequencies in the naïve T cell repertoire start off at a fixed rank order with minimal skewing as would be expected from a predominantly β-selected repertoire. A total of 22 TCRVβ proteins was quantitated by flow cytometry in a group of 20 unselected umbilical cord blood (UCB) samples (a kind gift from Dr. P. Rubinstein, NY Blood Center, NY), consisting of >80% naïve T cells as defined by CD27+CD45RA+ staining in CD4+ and CD8+ cells. A common rank order of TCRVβ protein frequencies was found in both CD4 and CD8 T cell subsets (figure 1). Median TCRVβ frequencies in CD4 and in CD8 cells of UCB were statistically not significantly different from the frequencies in adult donor CD4 and CD8 cells (Wilcoxon signed rank test; p > 0.2). Furthermore, the percentages of CD4 cells expressing a particular Vβ correlated significantly in CD8 cells (figure 2) with some Vβ proteins being predominantly expressed by either CD4 (Vβ2, Vβ5.1) or CD8 (Vβ14, Vβ7) cells. Our data therefore conform to the prediction that the TCRVβ frequencies are dominantly shaped by β-selection, and not by interactions of the αβTCR/ co-receptor with MHC/ antigen complexes during thymic selection. Figure 1. TCRBV in UCB CD4+ (top) and CD8+ (bottom) T cells Figure 1. TCRBV in UCB CD4+ (top) and CD8+ (bottom) T cells Figure 2. Comparison of TCRBV protein expression frequencies in CD4 and CD8 cells of UCB Figure 2. Comparison of TCRBV protein expression frequencies in CD4 and CD8 cells of UCB


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 3001-3001 ◽  
Author(s):  
Michael Rettig ◽  
Steven M. Devine ◽  
Julie Ritchey ◽  
John F. DiPersio

Abstract We are currently evaluating a novel method for the procurement of peripheral blood stem cells from HLA matched sibling donors using a direct antagonist of the CXCR4/SDF-1 interaction called AMD3100 (A). Donors receive a single subcutaneous injection of A and then undergo a 20 liter leukapheresis (LP) four hours later. The LP product is then cryopreserved and subsequently transplanted following ablative conditioning. To date, we have performed 15 transplants with allografts collected following A alone. In comparison to allografts collected following five days of G-CSF, A mobilized allografts contain approximately 50% less CD34+ cells but 2–3 times more CD3+ cells. Nevertheless, the kinetics of neutrophil and platelet engraftment have been virtually identical to that observed following G-mobilized allografts and grades 2–4 acute GVHD has been observed in only 20% of recipients. We sought to analyze the functional and phenotypic properties of T cells collected following A alone to understand the relatively low rates of acute GVHD despite the transplantation of higher T-cell doses. In 3 donors, extensive T cell phenotyping was performed on donor peripheral blood prior to A, 6 hours following A, and also on the LP product collected after A. Specifically, we were seeking to determine whether any alteration in CD4+ or CD8+ subsets had occurred. We analyzed T-cell subsets using well described markers for central memory, effector memory, naïve, and effector memory RA phenotypes. We also assessed expression of CD62L, CD127, CCR7, and SLAM family members (CD48, CD150, and CD244) on both CD4+ and CD8+ cells. The activation status on CD4 and CD8 cells was assessed using markers for CD25, CD30, and CD69. Finally we assessed for quantitative changes in the mobilization of regulatory T cells by assaying the proportion of CD4+CD25+FoxP3+ cells mobilized following A. In none of these analyses could we detect any significant alteration in the relative ratios of CD4 or CD8 subsets mobilized by A. Finally, the functional capacity of purified CD3+ cells collected following A was assessed using a NOD/SCID xenogeneic GVHD model we have recently developed. In that model, survival of mice transplanted with A mobilized T-cells was similar to that observed with untreated T cells, suggesting that A mobilized T cells retain their GVHD-inducing capacity. In summary, these preliminary data suggest that AMD3100 induces a “pan-mobilization” of T cell subsets without any apparent skewing toward a particular subset. These studies are in contrast to others suggesting subtle phenotypic and functional changes in donor T cells after mobilization with G-CSF. Further studies evaluating A mobilized allografts are ongoing.


Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5487-5487
Author(s):  
Ivo Veletic ◽  
Taghi Manshouri ◽  
Graciela M. Nogueras González ◽  
Sanja Prijic ◽  
Joseph E. Bove ◽  
...  

Abstract Background: Primary myelofibrosis (PMF), post-polycythemia vera MF (post-PV MF) and post-essential thrombocythemia MF (post-ET MF) are characterized by expansion of the neoplastic clone and by progressive bone marrow (BM) fibrosis. Like in other hematologic malignancies, in most patients with MF the immune system is significantly deregulated: MF patients' plasma cytokine and chemokine levels are markedly increased and their normal T cell subset distribution is significantly altered. Although treatment with the Janus kinase (JAK)-1/2 inhibitor ruxolitinib significantly decreases cytokine/chemokine levels, reduces spleen size, and improves symptoms and quality of life, it does not reverse BM fibrosis nor does it halt the propagation of the neoplastic clone. The T cell immune checkpoint programmed cell death protein-1 (PD-1) promotes immune tolerance by binding to the tumor's cell surface PD-1 ligand (PD-L1). Whereas the importance of T cell-mediated immune tolerance in MF has been documented and trials evaluating clinical benefits of PD1/PD-L1 checkpoint inhibition are ongoing, little is known about the effect of ruxolitinib on PD-1 expression in T cell subsets. Therefore we systematically analyzed MF patients circulating T cells' surface marker expression prior to and during ruxolitinib treatment. Methods: Peripheral blood cells were obtained from well-characterized PMF, post-PV MF and post-ET MF patients prior to and during the course of treatment with ruxolitinib (n=47) and, as control, from age-matched healthy donors (n=28). The proportion of PD-1-expressing CD4+ and CD8+ cells was assessed using multiparameter flow cytometry. Naïve, central memory, effector memory, and effector T cell subsets were defined based on CD45RO and CD27 cell surface antigen expression. Results: A significantly high number of circulating T cells co-expressing CD4+/PD-1+ and CD8+/PD-1+ was found in MF patients compared to age-matched healthy individuals (5.3±4.1% vs. 3.4±1.7%, P=0.028; 7.1±4.4% vs. 3.8±2.3%, P=0.001). Whereas MF patients' naïve T cells harbored an increased number of cells co-expressing CD8+/PD-1+ (P=0.007), but not CD4+/PD-1+, their T central memory cells had a high proportion of cells co-expressing CD4+/PD-1+ and CD8+/PD-1+ (P<0.001; P<0.001). Similarly, a high proportion of circulating PD-1+ T effector memory cells (P<0.001; P<0.001), and T effector cells (P=0.013; P<0.001) was found in MF patients compared to the same cell subsets in healthy age-matched individuals. The proportions of PD-1+ T cells significantly correlated with LDH level and DIPSS score (CD4+ T cells), monocyte count (CD8+ T cells), and total leukocyte count and spleen size (both subsets). Remarkably, the percentage of PD-1+ cells within naïve and central memory CD8+ T cell populations was significantly higher in MF patients with circulating blasts (P=0.036). To determine the effects of ruxolitinib administration, we performed repeated flow cytometry analyses on MF patients' T cells prior to and during treatment (median duration: 4.3 years). Overall, no significant change in PD-1 expression levels in any of the different T cell subsets was detected over the entire treatment period. However, a significant reduction in percentage of cells co-expressing CD4+/PD-1+ and CD8+/ PD-1+ compared to treatment baseline (4.4±0.4% vs. 7.6±2.0%, P=0.011; 6.3±0.6% vs. 10.4±2.7%, P=0.021) was found in patients whose spleen size was reduced after 6 months of treatment. Conclusions: In patients with MF, circulating T cells express high levels of PD-1. While not restricted to a particular stage of T cell differentiation, the correlation between PD-1-expressing T cells and distinct clinical parameters suggests that increased PD-1 levels might induce immune exhaustion in T cell subsets in different ways. Although ruxolitinib significantly inhibits the JAK1/2 signaling pathway in a variety of hematopoietic cells, thereby lowering cytokine/chemokine levels in almost all MF patients, treatment with ruxolitinib did not affect PD-1 expression nor did it alter its distribution among the T cell subsets. Yet, the proportion of PD-1-expressing CD4+ and CD8+ cells was markedly reduced in patients who experienced a superior response to ruxolitinib as assessed by significant spleen size reduction. How disease burden and MF microenvironment affect PD-1 expression in T cells of patients with MF warrants further investigation. Disclosures Verstovsek: Incyte: Consultancy; Novartis: Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Membership on an entity's Board of Directors or advisory committees; Italfarmaco: Membership on an entity's Board of Directors or advisory committees.


Sign in / Sign up

Export Citation Format

Share Document