scholarly journals TCF-1 limits the formation of Tc17 cells via repression of the MAF–RORγt axis

2019 ◽  
Vol 216 (7) ◽  
pp. 1682-1699 ◽  
Author(s):  
Lisa A. Mielke ◽  
Yang Liao ◽  
Ella Bridie Clemens ◽  
Matthew A. Firth ◽  
Brigette Duckworth ◽  
...  

Interleukin (IL)-17–producing CD8+ T (Tc17) cells have emerged as key players in host-microbiota interactions, infection, and cancer. The factors that drive their development, in contrast to interferon (IFN)-γ–producing effector CD8+ T cells, are not clear. Here we demonstrate that the transcription factor TCF-1 (Tcf7) regulates CD8+ T cell fate decisions in double-positive (DP) thymocytes through the sequential suppression of MAF and RORγt, in parallel with TCF-1–driven modulation of chromatin state. Ablation of TCF-1 resulted in enhanced Tc17 cell development and exposed a gene set signature to drive tissue repair and lipid metabolism, which was distinct from other CD8+ T cell subsets. IL-17–producing CD8+ T cells isolated from healthy humans were also distinct from CD8+IL-17− T cells and enriched in pathways driven by MAF and RORγt. Overall, our study reveals how TCF-1 exerts central control of T cell differentiation in the thymus by normally repressing Tc17 differentiation and promoting an effector fate outcome.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A586-A586
Author(s):  
Sara Schad ◽  
Andrew Chow ◽  
Heng Pan ◽  
Levi Mangarin ◽  
Roberta Zappasodi ◽  
...  

BackgroundCD4 and CD8 T cells are genetically and functionally distinct cell subsets of the adaptive immune system that play pivotal roles in immune surveillance and disease control. During development in the thymus, transcription factors ThPOK and Runx3 regulate the differentiation and maturation of these two lineages into single positive T cells that enter the periphery with mutually exclusive expression of either the CD4 or CD8 co-receptor.1–2 Despite our expectation that these two cell fates are fixed, mature CD4+CD8+ double positive (DP) T cells have been described in the context of numerous immunological responses, including cancer, but their molecular and functional properties and therapeutic relevance remain controversial and largely unknown.3–5MethodsOur lab has identified and characterized a heterogenous DP T cell population in murine and human melanoma tumors comprised of CD4 and CD8 T cells re-expressing the opposite co-receptor and a parallel uptake in the opposite cell type’s phenotype and function. Using CD4 (Trp1) and CD8 (Pmel) transgenic TCR T cells specific to B16 melanoma antigens gp75 and gp100 respectively, we demonstrate the re-expression of the opposite co-receptor following adoptive T cell transfer in B16 melanoma tumor bearing mice.ResultsSpecifically, up to 50% of transferred CD4 Trp1 T cells will re-express CD8 to become a DP T cell in the tumor microenvironment. Further, these CD4 derived DP T cells upregulate CD8 lineage regulator Runx3 and cytolytic genes Gzmb, Gzmk, and Prf1 to become potent cytotoxic T cells. Alternatively, a subset of CD8 Pmel T cells differentiate into DP T cells characterized by the increased expression of CD4, ThPOK, and regulatory marker FoxP3 (figure 1). In addition, we utilized 10x single cell and ATAC sequencing to further characterize these divergent DP T cell populations among open repertoire T cells isolated from murine and human melanoma tumors.ConclusionsOur findings highlight the capability of single positive T cells to differentiate in response to antigen and local stimuli into novel T cell subsets with polyfunctional characteristics. The resulting cell subsets will potentially affect the tumor microenvironment in distinct ways. Our studies may inform therapeutic approaches to identify antigen specific T cells as well as innovative signaling pathways to target when genetically engineering T cells to optimize cytotoxic function in the setting of adoptive cell therapy.Ethics ApprovalThe human biospecimen analyses were approved by Memorial Sloan Kettering Cancer Center IRB #06-107ReferencesEllmeier W, Haust L & Tschismarov R. Transcriptional control of CD4 and CD8 coreceptor expression during T cell development. Cell Mol Life Sci 2013;70:4537–4553.Luckey MA, et al. The transcription factor ThPOK suppresses Runx3 and imposes CD4+ lineage fate by inducing the SOCS suppressors of cytokine signaling. Nature Immunology 2014; 15, 638–645.Bohner P, et al. Double positive CD4(+)CD8(+) T Cells are enriched in urological cancers and favor T Helper-2 polarization. Front Immunol 2019; 10, 622.Nascimbeni M, Shin E-C, Chiriboga L, Kleiner DE & Rehermann B. Peripheral CD4(+)CD8(+) T cells are differentiated effector memory cells with antiviral functions. Blood 2004;104:478–486.Nishida K, et al. Clinical importance of the expression of CD4+CD8+ T cells in renal cell carcinoma. Int Immunol 2020;32:347–357.



2022 ◽  
Vol 12 ◽  
Author(s):  
Yufei Mo ◽  
Kelvin Kai-Wang To ◽  
Runhong Zhou ◽  
Li Liu ◽  
Tianyu Cao ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in rapid T lymphocytopenia and functional impairment of T cells. The underlying mechanism, however, remains incompletely understood. In this study, we focused on characterizing the phenotype and kinetics of T-cell subsets with mitochondrial dysfunction (MD) by multicolor flow cytometry and investigating the association between MD and T-cell functionality. While 73.9% of study subjects displayed clinical lymphocytopenia upon hospital admission, a significant reduction of CD4 or CD8 T-cell frequency was found in all asymptomatic, symptomatic, and convalescent cases. CD4 and CD8 T cells with increased MD were found in both asymptomatic and symptomatic patients within the first week of symptom onset. Lower proportion of memory CD8 T cell with MD was found in severe patients than in mild ones at the stage of disease progression. Critically, the frequency of T cells with MD in symptomatic patients was preferentially associated with CD4 T-cell loss and CD8 T-cell hyperactivation, respectively. Patients bearing effector memory CD4 and CD8 T cells with the phenotype of high MD exhibited poorer T-cell responses upon either phorbol 12-myristate-13-acetate (PMA)/ionomycin or SARS-CoV-2 peptide stimulation than those with low MD. Our findings demonstrated an MD-associated mechanism underlying SARS-CoV-2-induced T lymphocytopenia and functional impairment during the acute phase of infection.



1994 ◽  
Vol 14 (2) ◽  
pp. 1084-1094
Author(s):  
Z Hanna ◽  
C Simard ◽  
A Laperrière ◽  
P Jolicoeur

The CD4 protein plays a critical role in the development and function of the immune system. To gain more insight into the mechanism of expression of the human CD4 gene, we cloned 42.2 kbp of genomic sequences comprising the CD4 gene and its surrounding sequences. Studies with transgenic mice revealed that a 12.6-kbp fragment of the human CD4 gene (comprising 2.6 kbp of 5' sequences upstream of the transcription initiation site, the first two exons and introns, and part of exon 3) contains the sequences required to support the appropriate expression in murine mature CD4+ CD8- T cells and macrophages but not in immature double-positive CD4+ CD8+ T cells. Expression in CD4+ CD8+ T cells was found to require additional regulatory elements present in a T-cell enhancer fragment recently identified for the murine CD4 gene (S. Sawada and D. R. Littman, Mol. Cell. Biol. 11:5506-5515, 1991). These results suggest that expression of CD4 in mature and immature T-cell subsets may be controlled by distinct and independent regulatory elements. Alternatively, specific regulatory elements may control the expression of CD4 at different levels in mature and immature T-cell subsets. Our data also indicate that mouse macrophages contain the regulatory factors necessary to transcribe the human CD4 gene.



Blood ◽  
2009 ◽  
Vol 113 (21) ◽  
pp. 5134-5143 ◽  
Author(s):  
Stoyan Dimitrov ◽  
Christian Benedict ◽  
Dennis Heutling ◽  
Jürgen Westermann ◽  
Jan Born ◽  
...  

Abstract Pronounced circadian rhythms in numbers of circulating T cells reflect a systemic control of adaptive immunity whose mechanisms are obscure. Here, we show that circadian variations in T cell subpopulations in human blood are differentially regulated via release of cortisol and catecholamines. Within the CD4+ and CD8+ T cell subsets, naive cells show pronounced circadian rhythms with a daytime nadir, whereas (terminally differentiated) effector CD8+ T cell counts peak during daytime. Naive T cells were negatively correlated with cortisol rhythms, decreased after low-dose cortisol infusion, and showed highest expression of CXCR4, which was up-regulated by cortisol. Effector CD8+ T cells were positively correlated with epinephrine rhythms, increased after low-dose epinephrine infusion, and showed highest expression of β-adrenergic and fractalkine receptors (CX3CR1). Daytime increases in cortisol via CXCR4 probably act to redistribute naive T cells to bone marrow, whereas daytime increases in catecholamines via β-adrenoceptors and, possibly, a suppression of fractalkine signaling promote mobilization of effector CD8+ T cells from the marginal pool. Thus, activation of the major stress hormones during daytime favor immediate effector defense but diminish capabilities for initiating adaptive immune responses.



2020 ◽  
Vol 32 (9) ◽  
pp. 571-581 ◽  
Author(s):  
Shiki Takamura

Abstract Antigen-driven activation of CD8+ T cells results in the development of a robust anti-pathogen response and ultimately leads to the establishment of long-lived memory T cells. During the primary response, CD8+ T cells interact multiple times with cognate antigen on distinct types of antigen-presenting cells. The timing, location and context of these antigen encounters significantly impact the differentiation programs initiated in the cells. Moderate re-activation in the periphery promotes the establishment of the tissue-resident memory T cells that serve as sentinels at the portal of pathogen entry. Under some circumstances, moderate re-activation of T cells in the periphery can result in the excessive expansion and accumulation of circulatory memory T cells, a process called memory inflation. In contrast, excessive re-activation stimuli generally impede conventional T-cell differentiation programs and can result in T-cell exhaustion. However, these conditions can also elicit a small population of exhausted T cells with a memory-like signature and self-renewal capability that are capable of responding to immunotherapy, and restoration of functional activity. Although it is clear that antigen re-encounter during the primary immune response has a significant impact on memory T-cell development, we still do not understand the molecular details that drive these fate decisions. Here, we review our understanding of how antigen encounters and re-activation events impact the array of memory CD8+ T-cell subsets subsequently generated. Identification of the molecular programs that drive memory T-cell generation will advance the development of new vaccine strategies that elicit high-quality CD8+ T-cell memory.



Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 4352-4352
Author(s):  
Mohammad Raeiszadeh ◽  
Matthew Verney ◽  
Charles Craddock ◽  
Harald Wajant ◽  
Paul Moss ◽  
...  

Abstract Recent evidence suggests that Tumor Necrosis Factor (TNF) can selectively kill antigen-specific autoreactive CD8+ T-cells through engagement with TNF Receptor 2 (TNFR2) (1). Within the immune system, TNFR2 expression is restricted to subsets of T-cells, a profile which is in marked contrast to the ubiquitous pattern of expression of TNFR1. However, the spectrum and physiological significance of TNFR2 expression by CD8+ T-cell subpopulations is unknown. In this study we analysed the expression of TNFR2 by CD8 T-cell subsets isolated from normal healthy donors by flow cytometry. In addition, in order to understand the physiological significance of TNFR2 expression on recently activated T cells, we further studied expression on CMV-specific CD8 T-cells which expanded in stem cell transplant patients in response to episodes of CMV reactivation. The expression of TNFR2 was compared to that of other common gamma chain receptors including IL2R and IL7R, and to the expression of a receptor for inflammatory cytokine IL6. TNFR2 expression was found to increase during differentiation of CD8+ T cells. In particular, TNFR2 expression was seen on 6.5% of naïve, 14.6% of central memory, 37.9% of effector memory and 45.2% of CD45RA-revertant effector memory (TEMRA) CD8+ T cells. In contrast, common gamma chain cytokine receptor expression was skewed towards less differentiated T-cell subsets. For example, IL-7R was expressed by 63% of central memory populations but only 18.4% of the TEMRA subset. Comparable expression of IL2R was 12.1% on TCM and 2% on TEMRA. Of interest, IL-6 receptor expression was predominantly expressed by naïve CD8 T-cells (69.5%). In support of these results, we went on to show that expression of TNFR2 was inducible on primary T cells following activation with anti-CD3 and IL-2 in vitro. Healthy CMV seropositive donors had a larger median number of CD8+ T cells expressing TNFR2 (53%) in comparison to CMV seronegative donors (15%), (p<0.0001), consistent with the known accumulation of differentiated T-cells within CMV seropositive individuals.The expression of TNFR2 was then examined on CMV-specific CD8 T-cells which were undergoing acute expansion in response to viremia in six haemopoietic stem cell transplant patients. The expansion of CMV-specific CD8 T-cells was accompanied by an increase in the intensity of TNFR2 expression which later decreased during the retraction of antigen-specific T-cells during resolution of viremia. In order to explore the functional significance of TNFR2 expression, T-cells isolated from healthy donors were treated with recombinant TNFR2-specific ligand. This induced cell loss ranging from 13% to 60% of all CD8 T-cells in relation to untreated control cells, with selective depletion of the TNFR2+ population. A similar proportion of CMV-specific T-cells from transplant patients were eliminated by ex vivo stimulation of TNFR2. In conclusion our work shows that TNFR2 expression increases during differentiation of CD8+ T cells. In addition, we were able to utilize virus-specific T cells from SCT patients to show that expression is increased during the acute response to stimulation with antigen. We also provide evidence that TNFR2 activation can lead to the partial elimination of antigen-specific CMV-specific T-cells and it may thus play an important role in the ‘deflation’ of a pathogen-specific T-cell immune response following resolution of infection. These data suggest that TNFR2 expression may act as a ligand to signal activation-induced cell death in late differentiated populations of CD8+ T cells. Further investigations are required to assess the molecular pathways of TNFR2 signalling that are activated following receptor ligation in vivoand whether or not these are disrupted in disorders associated with chronic CD8+ T cell lymphproliferation. (1) L. Ban et al, PNAS 2008, 105: 3644 Disclosures No relevant conflicts of interest to declare.



Blood ◽  
2000 ◽  
Vol 96 (1) ◽  
pp. 195-202 ◽  
Author(s):  
Masaki Tateyama ◽  
Naoki Oyaizu ◽  
Thomas W. McCloskey ◽  
Soe Than ◽  
Savita Pahwa

CD4 molecules serve as coreceptors for the T-cell receptor (TCR)/CD3 complex that are engaged coordinately with TCR and facilitate antigen-specific T-cell activation leading to interleukin 2 (IL-2) production and proliferation. However, cross-ligation of CD4 molecules prior to TCR stimulation has been shown to prime CD4 T cells to undergo apoptosis. Although in vivo and in vitro experiments have implicated the involvement of Fas/FasL interaction in this CD4 cross-linking (CD4XL)-induced apoptosis, detailed mechanisms to account for cell death induction have not been elucidated. In the present study, we demonstrate that CD4XL in purified T cells not only led to Fas up-regulation but also primed CD4 T cells to express FasL upon CD3 stimulation and rendered the T cells susceptible to Fas-mediated apoptosis. Notably, in addition to CD4+ T cells, CD4XL-induced sensitization for apoptosis was observed in CD8+ T cells as well and was associated with Bcl-x down-modulation. Both CD4 and CD8 T-cell subsets underwent apoptosis following cell–cell contact with FasL+ CD4 T cells. CD28 costimulation abrogated CD4XL/CD3-induced apoptosis with restoration of IL-2 production and prevented Bcl-x down-modulation. As CD4 molecules are the primary receptors for human immunodeficiency virus 1 (HIV-1), we conclude that HIV-1 envelope mediated CD4XL can lead to the generation of FasL-expressing CD4+ T cells that can lead to apoptosis of CD4 as well as CD8 T cells. These findings implicate a novel mechanism for CD8 T-cell depletion in HIV disease.



Author(s):  
Mariana V. Rosemblatt ◽  
Brian Parra-Tello ◽  
Pedro Briceño ◽  
Elizabeth Rivas-Yáñez ◽  
Suat Tucer ◽  
...  

Ecto-5′-nucleotidase (CD73) is an enzyme present on the surface of tumor cells whose primary described function is the production of extracellular adenosine. Due to the immunosuppressive properties of adenosine, CD73 is being investigated as a target for new antitumor therapies. We and others have described that CD73 is present at the surface of different CD8+ T cell subsets. Nonetheless, there is limited information as to whether CD73 affects CD8+ T cell proliferation and survival. In this study, we assessed the impact of CD73 deficiency on CD8+ T cells by analyzing their proliferation and survival in antigenic and homeostatic conditions. Results obtained from adoptive transfer experiments demonstrate a paradoxical role of CD73. On one side, it favors the expression of interleukin-7 receptor α chain on CD8+ T cells and their homeostatic survival; on the other side, it reduces the survival of activated CD8+ T cells under antigenic stimulation. Also, upon in vitro antigenic stimulation, CD73 decreases the expression of interleukin-2 receptor α chain and the anti-apoptotic molecule Bcl-2, findings that may explain the reduced CD8+ T cell survival observed in this condition. These results indicate that CD73 has a dual effect on CD8+ T cells depending on whether they are subject to an antigenic or homeostatic stimulus, and thus, special attention should be given to these aspects when considering CD73 blockade in the design of novel antitumor therapies.



Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1338-1338
Author(s):  
Sueon Kim ◽  
Hyun-Jung Sohn ◽  
Hyun-Joo Lee ◽  
Dae-Hee Sohn ◽  
Seung-Joo Hyun ◽  
...  

Abstract S.K and H.-J.S. contributed equally for this works Dendritic cell-derived exosome (DEX) has been known as an efficient stimulator of T cells. However, the production of sufficient DEX remains a barrier to broad utility for immunotherapy. In this study, we engineered K562 cells expressing triple-co-stimulatory signals (CD80, 4-1BBL, and CD83) with HLA-A2 as an AAPC. Specifically, CD137L (4-1BBL) is an ideal signaling molecule for long-term propagation of CD8+ T cells, and the addition of other co-stimulatory molecules, such as CD80 and CD83, is used to support the expansion of naive T cell subsets. DC-derived exosomes display immunologically important molecules such as HLA and co-stimulatory molecules. Likewise, CoEX-A2 expressed high levels of HLA-A2, CD80, CD83, and CD137L (41BBL) and mediate strong, antigen-specific CD8+ T lymphocyte activation. The stimulation of freshly isolated peripheral CD8+ T cells with the appropriate antigen specificity observed here was likely made possible by the use of the sensitive ELISPOT assay. Viral or tumor protein-pulsed exosomes can directly stimulate CD8+ T cell proliferation and differentiation into CTLs in vitro. In addition, exosomes can be taken up by both CD8+ T cells and K562 cells. Meanwhile, K562 cells that have taken up exosomes can also stimulate CD8+ T cells, which may be due to the higher levels of HLA-A2, CD80, CD83, and 41BBL expression observed on exosomes. Therefore, the CD8+ T cell antigen-specific expansion observed in our cultures is likely the result of coated CoEX-A2s working directly or in a cross-dressed manner. The results suggest that these novel exosomes may provide a crucial source to generate antigen-specific CD8+ T cells for adoptive cell therapy against viral infection and tumors. Disclosures No relevant conflicts of interest to declare.



Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3159-3159 ◽  
Author(s):  
Krzysztof Giannopoulos ◽  
Malgorzata Kowal ◽  
Anna Dmoszynska ◽  
Jacek Rolinski ◽  
Kamila Mazurek ◽  
...  

Abstract There is an accumulation of in vivo (graft-versus-leukemia effect) and in vitro (spontaneous remissions after infections) data providing evidence that CLL might be effectively targeted by T-cell based immunotherapy. Earlier, we characterized the receptor for hyaluronic acid mediated motility (RHAMM) as antigen associated with proliferation and negative prognosis in CLL. We also demonstrated that RHAMM-derived epitope(R3)- primed T cells were able to lyse RHAMM+ target CLL cells. Therefore, we initiated a small phase I/II clinical trial with R3 peptide vaccination for patients with CLL. Six CLL patients in Binet stage 0 of the disease were vaccinated four times at a biweekly interval with HLA-A2 restricted RHAMM-derived epitope R3 (ILSLELMKL, 300μg/dose on day 3) emulsified in incomplete Freund’s adjuvant (IFA) with concomitant administration of GM-CSF (100μg/dose, days 1–5). R3-specific T-cell responses were assessed by tetramer staining and ELISPOT assays. T-cell subsets which play a role in regulation of immune responses including CD3+CD4+CD25hiCD127loFOXP3+ T regs, Th17, CD8+CD137+, CD8+CD103+ and IL-17 producing CD8+ T cells (CD8+IL-17+) were evaluated by flow cytometry. No severe adverse events greater than CTC Io skin toxicity could be observed. Four of six patients showed a reduction of WBC during vaccination. Although these WBC changes did not meet the NCI response criteria, we described these favorable hematological changes achieved in short period of immunotherapy as hematological improvement (defined as at least 20% reduction of WBC during vaccination). The immune responses were found in 5/6 patients as assessed by tetramer-staining (positive response defined as an increase of R3-specific CD8+ T cell frequency by more than 100% after vaccination) and confirmed in 4/5 as assessed by ELISPOT assay. Patients included in this study showed median Tregs frequency of 4.2%, range: 2.5–8%. There was no significant difference of Tregs percentages between patients who improved clinically when compared with non-responders (median 6.1% vs. 3.7%). Vaccination induced Tregs in 4 patients (2 non-responders and 2 responders). Two other patients who improved hematologically did not significantly change frequency of Tregs or even reduced it during vaccination (Figure 1). Median expression of CD103 on CD8+ T cells was 1.84%, range: 0.41–5.63%. In one non-responder, we observed an increase in frequency of CD103+CD8+ T-cells during vaccination from 1.46% to 2.56%. During vaccination, changes in CD8+CD103+ T cell subset did not correlate with the frequency of Tregs, nonetheless we could find an inverse correlation with inflammatory Th17 T cells (r2=−0.5, p&lt;0.05). We could find a correlation between the frequency of Tregs and activated CD8+CD69+ T cells (r2=0.51, p&lt;0.05). Interestingly, CD8+CD137+ cells correlated with CD8+IL-17+ T cells (r2=0.54, p&lt;0.05). In conclusion, peptide vaccination in CLL patients is safe and feasible to mount immune responses against the tumor antigen RHAMM. Most of patients benefited hematologically from vaccination. Although in some patients we observed an induction of tumor-specific T cells without induction of Tregs there is a rationale to add novel active agents against Tregs in future vaccination trials. Figure 1. Peptide vaccination induced changes in WBC, percentages of regulatory T cells (Tregs) as well as R3 specific tetramer ‘CD’ T cells (tetra) of A CLL patients. Patients B, C, E and F improved hematologically during vaccination. Figure 1. Peptide vaccination induced changes in WBC, percentages of regulatory T cells (Tregs) as well as R3 specific tetramer ‘CD’ T cells (tetra) of A CLL patients. Patients B, C, E and F improved hematologically during vaccination.



Sign in / Sign up

Export Citation Format

Share Document