Shear strength of furfurylated, N-methylol melamine and thermally modified wood bonded with three conventional adhesives

2016 ◽  
Vol 12 (4) ◽  
pp. 236-241 ◽  
Author(s):  
Alireza Bastani ◽  
Stergios Adamopoulos ◽  
Holger Militz
BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3224-3234
Author(s):  
Mojgan Vaziri ◽  
Dick Sandberg

This work investigated how thermal modification affects the shear strength of welded joints under different climatic conditions. The order of the thermal modification, before or after the welding, was investigated for its effect on the shear strength of the welded wood. Two groups of thermally modified specimens were prepared in a laboratory kiln under controlled conditions, one thermally modified before welding and the other after welding of the specimens. The shear strength of the specimens were measured at four different moisture contents of 10%, 12%, 16%, and 18%, and the results for the two different approaches were compared. Moreover, observations of the X-ray computed tomography scanning and digital microscopy were used to study the density profile and the structural details of the welded joints. The results showed that thermal treatment of the wood either before or after welding had a negative influence on the shear strength, and the modes of failure of the joints in mechanical tests were in most cases brittle. In the weld interface of the wood modified before welding, a rigid material similar to charcoal was produced as a result of the further degradation of wood by welding pressure and frictional motion. Welding of wood before thermal modification, however, yielded thicker and more densified joints with less susceptibility to higher moisture variations than the joints obtained by welding the thermally modified wood.


2019 ◽  
Vol 70 (3) ◽  
pp. 273-278
Author(s):  
Vjekoslav Živković ◽  
Gustav Gabrek ◽  
Goran Mihulja

This paper presents the influence of natural surface ageing in indoor conditions on bonding quality of thermally modified wood used in structural laminated products. Two unmodified and thermally modified wood species were used for the experiment: oak and beech. Samples were planed and glued with MUF adhesive 2 hours, 1, 2, 6, 10, and 18 days after planing. Properties of laminated beech and oak beams, namely shear strength, delamination and contact angle, were measured in order to detect 1) suitability of wood species for lamination process and 2) influence of extended storage time after planing on properties of laminated wood. Generally, both native and thermally modified beech exhibited better results of shear strength and delamination and had lower contact angles compared to oak and thermally modified oak. Results of the delamination test (total delamination) indicate time dependence of surface ageing. Both unmodified and thermally modified beech may be successfully laminated at least up to 2 days after planing, whereas neither oak nor thermally modified oak are suitable for lamination process due to excessive delamination. Results of delamination may be related to contact angle measurements. Shear strength of glue lines did not show any influence on natural surface ageing. However, whereas beech and thermally modified beech samples exhibited almost the same values of the shear strength regardless of the duration of surface ageing, there is an obvious difference in shear strength of oak and thermally modified oak samples.


Author(s):  
Pavel Král ◽  
Petr Klímek ◽  
Pawan Kumar Mishra

Thermally modified wood has been widely reported to have improved durability and aesthetic appeal than its natural counterparts in same economic range. Due to this, there has been a constant effort to utilize its durability properties in different commercial products. Utilization of outer layer thermally modified wood on exposed surface is a classical idea, but bonding of thermally modified to natural wood has been a challenging part and needs extensive investigation on different species. In this study, we tried to investigate bonding properties of oak wood with thermally modified wood (spruce) and compared it with natural oak – oak bond strength. We observed a significant decrease of 47% in value of shear strength for thermally treated wood with natural wood when compared with natural oak – oak bonding. Thermally treated wood can be used as outermost layer in those products, where shear strength does not play a crucial role and more research is required to improve its bonding with natural wood to increase its applicability range.


Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 253
Author(s):  
Ruslan Rushanovich Safin ◽  
Aigul Ravilevna Shaikhutdinova ◽  
Ruslan Khasanshin ◽  
Shamil Mukhametzyanov ◽  
Albina Safina

This work is devoted to the study of the effect of ultraviolet rays for the surface activation of pine wood thermally modified at temperatures of 180−240 °C in order to increase the surface roughness, enhance the wettability of thermal wood and the adhesive strength of the glue in the production of wood block furniture panels. Studies were carried out to measure the contact angle of wettability of thermally modified wood samples of pine, as a result of which it was determined that the ultraviolet treatment process contributes to an increase in the adhesion properties of the surface layer of thermally modified wood by more than 13% due to the reactivity of ultraviolet rays to oxidize and degrade ligno-containing wood products. At the same time, the most active process of surface activation takes place during 60 min of ultraviolet irradiation of wood with a total irradiation of at least 125 W/cm2. It was revealed that the combined effect of two-stage wood processing, including preliminary volumetric thermal modification followed by surface ultraviolet treatment, causes an increase in the moisture resistance of glued wood products by 24%. So, if the strength of the glue seam when gluing natural wood samples after boiling decreased by 46%, then the samples that underwent two-stage processing showed a decrease only by 22%. In connection with the results obtained, an improved technology for the production of furniture boards for the manufacture of moisture-resistant wood products is proposed.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2160
Author(s):  
Milan Gaff ◽  
Hana Čekovská ◽  
Jiří Bouček ◽  
Danica Kačíková ◽  
Ivan Kubovský ◽  
...  

This paper deals with the effect of synthetic and natural flame retardants on flammability characteristics and chemical changes in thermally treated meranti wood (Shorea spp.). The basic chemical composition (extractives, lignin, holocellulose, cellulose, and hemicelluloses) was evaluated to clarify the relationships of temperature modifications (160 °C, 180 °C, and 210 °C) and incineration for 600 s. Weight loss, burning speed, the maximum burning rate, and the time to reach the maximum burning rate were evaluated. Relationships between flammable properties and chemical changes in thermally modified wood were evaluated with the Spearman correlation. The thermal modification did not confirm a positive contribution to the flammability and combustion properties of meranti wood. The effect of the synthetic retardant on all combustion properties was significantly higher compared to that of the natural retardant.


2021 ◽  
Vol 114 ◽  
pp. 116-124
Author(s):  
Gabriela Slabejová ◽  
MÁRIA ŠMIDRIAKOVÁ

Colour stability of surface finishes on thermally modified beech wood. The paper deals with the influence of the type of transparent surface finish on the change of colour of the surfaces of native beech wood and thermally modified wood. At the same time, the colour stability of three surface finishes on the surfaces of native and thermally modified beech wood was monitored. Beech wood was thermally modified at temperature of 125 °C for 6 hours. The thermal treatment was performed in a pressure autoclave APDZ 240, by the company Sundermann s.r.o in Banská Štiavnica. Three various types of surface finishes (synthetic, wax-oil, water-based) were applied onto the wood surfaces. The colour of the surfaces of native wood and thermally modified wood was measured in the system CIELab before and after surface finishing; the coordinates L*, a*, b*, C*ab and h*ab were measured. From the coordinates measured before and after surface finishing, the differences were calculated and then the colour difference ∆E* was calculated. Subsequently, the test specimens with the surface finishes were exposed to natural sunlight, behind glass in the interior for 60 days. The surface colour was measured at specified time of the exposure (10, 20, 30, 60 days). The results showed that the colour of the wood surfaces changed after application of the individual surface finishes; and the colour difference reached a change visible with a medium quality filter up to a high colour difference. The wax-oil surface finish caused a high colour difference on native wood and on thermally modified wood as well. On native beech wood, the lowest colour difference after exposure to sunlight was noticeable on the synthetic surface finish. On the surface of wood thermally modified, after exposure to sunlight, the lowest colour difference was noticeable on the surface with no surface finish.


2021 ◽  
Vol 18 (1) ◽  
pp. 51-57
Author(s):  
F.A. Faruwa ◽  
K. Duru

The study investigated the use of thermal modification to improve the hygroscopic properties of False Iroko [Antiaris toxicaria (Lesch)]. Samples of Antiaris toxicara Lesch wood were subjected to thermal modification in a furnace at temperatures of 160, 180 and 200°C for 30 and 60 minutes. Results showed that wood properties were improved with exposure to different temperatures. Subsequent to the thermal process, a colour change from pale yellow to darkish brown was observed progressively with increase in temperature, accompanied by a weight loss in the range of 12.08% to 23.67%. The outcome of these treatments resulted in a decrease in volumetric swelling and increase in dimensional stability of modified wood; this can be attributed to observed decrease in moisture intake. The thermal modification of Antiaris toxicara Lesch wood affected the dimensional stability properties. Thus, due to significant changes via modification carried out on the selected species which is classified as lesser utilized wood species, lesser utilized wood,Antiaristoxicara Lesch wood is recommended for use due to its efficient dimensional stability after modification . keywords:, Thermally modified wood ;False Iroko


Sign in / Sign up

Export Citation Format

Share Document