Effect of glueline treatment using tobacco stalk and leaf midrib additives on the bond strength and termite resistance of urea-formaldehyde bonded plywood

Author(s):  
Juanito P. Jimenez Jr ◽  
Menandro N. Acda ◽  
Hidelisa P. Hernandez
Holzforschung ◽  
2010 ◽  
Vol 64 (3) ◽  
Author(s):  
Frank Stöckel ◽  
Johannes Konnerth ◽  
Wolfgang Kantner ◽  
Johann Moser ◽  
Wolfgang Gindl

Abstract The tensile shear strength of veneer lap joints was characterised. The joints were produced with an Automated Bonding Evaluation System (ABES) using urea-formaldehyde (UF) as well as melamine-urea-formaldehyde (MUF) adhesive formulated for particleboard production. At a fixed heating temperature of 110°C, a systematic increase in bond strength was observed for both adhesives with increasing cure time. The absolute bond strength was significantly higher for MUF compared to UF. Nanoindentation experiments with the same specimens used for ABES revealed a very hard, stiff and brittle character of the UF resin, whereas the MUF proved significantly less hard and stiff, and less brit-tle. Wood cell walls in contact with adhesive, i.e., where adhesive penetration into the cell wall was assumed, showed significantly altered mechanical properties. Such cell walls were harder, stiffer and more brittle than unaffected reference cell walls. These effects were slightly more pronounced for UF than for MUF. Comparing UF and MUF, the micro-mechanical properties of cured adhesive and interphase cell walls confirm earlier observations that tougher adhesives can lead to higher macroscopic bond strength. In strong contrast to that, no obvious correlation was found between micromechanical properties and the strong cure time dependence of macroscopic bond strength.


2010 ◽  
Vol 160-162 ◽  
pp. 1245-1252
Author(s):  
Zhen Zhong Gao ◽  
Li Tao Guan ◽  
Jin Sun ◽  
Deng Yun Tu

Hexamethoxymethyl melamine (HMMM) was used to modify UF resins to obtain good performance with low formaldehyde emission. The effect of urea to formaldehyde ratio, HMMM content on the properties of UF resin was studied in detail. The results suggested that urea to formaldehyde ratio to be 1:0.9 and 20% HMMM content is the optimum formulation to afford desired UF resin. The viscosity, solidification time, bond strength and formaldehyde emission of the modified UF resins were also studied. The results revealed that the performance of the modified UF achieved the chinese standard.


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1435 ◽  
Author(s):  
Hamid R. Taghiyari ◽  
Ayoub Esmailpour ◽  
Roya Majidi ◽  
Jeffrey J. Morrell ◽  
Mohammad Mallaki ◽  
...  

Urea-formaldehyde (UF) resins are primary petroleum-based, increasing their potential environmental footprint. Identifying additives to reduce the total amount of resin needed without adversely affecting the panel properties could reduce these impacts. Wollastonite is a mineral containing calcium and silica that has been used as an additive in a variety of materials and may be useful as a resin extender. Nanoscale wollastonite has been shown to enhance the panel properties but is costly. Micron-scale wollastonite may be a less costly alternative. Medium-density fiberboards were produced by blending a hardwood furnish with UF alone, micron-sized wollastonite alone, or a 9:1 ratio of UF to wollastonite. Panels containing of only wollastonite had poor properties, but the properties of panels with 9:1 UF/wollastonite were similar to the UF-alone panels, except for the internal bond strength. The results suggest that small amounts of micron-sized wollastonite could serve as a resin extender. Further studies are suggested to determine if the micron-sized material has similar positive effects on the resin curing rate.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2668-2679
Author(s):  
Vladislav Zdravković ◽  
Tanja Palija ◽  
Aleksandar Lovrić ◽  
Anđela Obradović

The choice of optimal pressing regime for certain types of substrate is of great importance in production of veneered panels. In this paper, the impact of pressing regime on the bonding strength of beech and oak veneers, glued with urea-formaldehyde (UF) adhesive, on medium-density fiberboard (MDF), and moisture-resistant MDF (MR MDF) substrates was examined. The analyses showed a generally higher bond strength with oak veneer compared to beech veneer, which was also the case with regular MDF compared to moisture-resistant MDF. Multivariate analysis of variance (ANOVA) showed that with beech veneer, all of the used regimes produced better results on regular MDF compared to moisture-resistant MDF. In contrast, with oak veneer, the influence of pressing regime had a more noteworthy impact than the type of substrate used. These results indicated that the use of MR MDF as substrate in combination with UF adhesive was inadequate.


Holzforschung ◽  
2018 ◽  
Vol 72 (2) ◽  
pp. 159-167 ◽  
Author(s):  
Seng Hua Lee ◽  
Zaidon Ashaari ◽  
Wei Chen Lum ◽  
Aik Fei Ang ◽  
Juliana Abdul Halip ◽  
...  

AbstractThe chemical properties, dimensional stability, mechanical strength and termite resistance of urea formaldehyde (UF) bond rubberwood (RW) particleboard (PB) were assessed after a two-step oil heat treatment (OHT). The PB was immersed in palm oil before heating to 180, 200, and 220°C in a laboratory oven for 2 h. Anti-swelling efficiency (ASE) and water repellency efficiency (WRE) as well as bending (MOE, MOR) and internal bonding strength (IB) were determined. Resistance against a subterranean termite,Coptotermes curvignathusHolmgren, was tested. The degradation of hemicelluloses and cellulose, that are mainly responsible for wood wetting processes, was confirmed by Fourier transform infrared (FTIR) spectra. Formation of an elevated cross-linking density in lignin also contributed to the dimensional stability, where 93.6% ASE and 46.3% WRE were achieved in the samples treated at 220°C. Mechanical properties of treated samples were inferior to the control samples due to hemicelluloses degradation and breakage of the UF bonding network. A significant improvement in termite resistance has been found in the treated samples.


2016 ◽  
Vol 8 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

A palm oil mill with a capacity of hundred thousand tons of fresh fruit bunches per year will produce palm fiber waste about 12,000 tons. Recently, the use of palm empty fruit bunches (OPEFB) fiber is as fuel for electricity generation in the industry. Palm fiber waste contains lignocellulose materials as a feedstock to particle board manufacture. The aim of this research is to evaluate the properties of particle board from a mixture of OPEFB fiber and sawdust. The ratio of OPEFB fiber and sawdust are 100% : 0%; 75% : 25%; 50% : 50%; 25% : 75% and 0% : 100%, plus urea formaldehyde adhesive in a concentration of 11%. The boards were pressed using a clamp pressure of 16 kg/cm2 for 15 minutes at a temperature of 110 – 120 0C. The testing methods and standards of physical properties (moisture contents, thickness swelling, density) and mechanical (modulus of elasticity/MOE, modulus of rupture/MOR, screw withdrawal and internal bond strengths) refers to the SNI. 03 – 2105 - 2006. The results showed that the particle board made from 100% OPEFB fiber produces modulus of elasticity/MOE 1594.88 kg/cm2; modulus of rupture/MOR 18.08 kg/cm2; screw withdrawal 31.34 kg/cm2 and internal bond strength 0.86 kg/cm2. The addition of sawdust for 50% can improve modulus of elasticity/MOE, modulus of rupture/MOR and internal bond strength.


Holzforschung ◽  
2014 ◽  
Vol 68 (6) ◽  
pp. 707-712 ◽  
Author(s):  
Johannes Konnerth ◽  
Martin Weigl ◽  
Wolfgang Gindl-Altmutter ◽  
Georg Avramidis ◽  
Arndt Wolkenhauer ◽  
...  

Abstract Spruce wood surfaces were treated with plasma with the aim of increacing either hydrophilicity or hydrophobicity. The treatments resulted in significant changes in wettability compared to aged and reference samples. Wettability was found to be a very good indicator of macroscopic bond strength. Nanoindentation adhesion measurements identified significant changes in adhesion at the immediate wood surface as a primary source of changes of bond performance, whereas mechanical performance of bulk wood cells was not affected.


10.12737/8454 ◽  
2015 ◽  
Vol 4 (4) ◽  
pp. 115-122
Author(s):  
Котенева ◽  
Anastasiya Koteneva ◽  
Пономаренко ◽  
Larisa Ponomarenko ◽  
Кантиева ◽  
...  

The task of the experiment was to clarify the standard modes of bonding plywood using in their produc-tion low toxic urea-formaldehyde resins, and obtain the required bond strength, as well as statistical anal-ysis of the results of research in order to obtain regression equations. The results showed that the bonding strength of plywood on low toxic resins is lower than on resins with high formaldehyde content. To en-sure the preservation of strength is possible only due to increased consumption of adhesive and duration of bonding.


Holzforschung ◽  
2010 ◽  
Vol 64 (6) ◽  
Author(s):  
Jürgen Follrich ◽  
Frank Stöckel ◽  
Johannes Konnerth

Abstract Three-part specimens were produced from Norway spruce wood (Picea abies Karst.) and bonded with the following adhesives: melamine-urea-formaldehyde (MUF), phenol-resorcinol-formaldehyde (PRF), and a two-component emulsion polymer isocyanate (EPI). The effect of alternating climate conditions on bond strength was studied by tensile tests. The specimens were exposed to a three-step ageing cycle lasting for 7 days [50°C/95% relative humidity (RH), -20°C/65– 70% RH and 75°C/15% RH] which was repeated 24 times. In general, a decrease in internal bond strength of all exposed specimens was observed but it was highest in the case of MUF-bonded joints. Furthermore, a significant decrease of the tensile strength of the wood adherend perpendicular to the grain in the tangential direction was determined after the cyclic climatic changes. The mechanical performance of the different adhesives in the bond line was tested by means of nanoindentation. Reduced values of elastic modulus, hardness, and total indentation were observed after climatic treatment, particularly for the rigid MUF adhesive, whereas the flexible adhesive EPI did not show such changes.


Sign in / Sign up

Export Citation Format

Share Document