scholarly journals Role of fibronectin in the migration of fibroblasts into plasma clots.

1986 ◽  
Vol 102 (6) ◽  
pp. 2318-2323 ◽  
Author(s):  
P Knox ◽  
S Crooks ◽  
C S Rimmer

The adhesion and migration of human diploid fibroblasts on plasma clots were measured. The role of plasma fibronectin was examined by depleting plasma of fibronectin before clotting. Fibronectin was not essential for cell adhesion and spreading, although rates were slightly slower on depleted clots. Rates of migration on the surface of clots were unaffected by fibronectin depletion. In contrast, fibronectin was an absolute requirement for migration of cells into plasma clots. Cells migrated rapidly into control clots but completely failed to penetrate the surface of fibronectin-depleted clots. The effect of depletion could only be reversed by adding fibronectin to depleted plasma before clotting. Adsorption of fibronectin after clotting failed to reverse the effect of depletion, suggesting that fibronectin had to be cross-linked by transglutaminase during the clotting process.

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 4347-4347
Author(s):  
Sarah Brophy ◽  
Fiona M Quinn ◽  
David O'Brien ◽  
Paul Browne ◽  
Elisabeth A. Vandenberghe ◽  
...  

Abstract The bone marrow and lymph node microenvironments are important in promoting cell proliferation, survival and protection from drug induced apoptosis in chronic lymphocytic leukaemia (CLL). Chemokine networks, such as the CXCR4/CXCL12 axis, in combination with selectins, such as CD62L and integrins allow the migration of CLL cells to these protective niches. The B-cell receptor (BCR) signalling pathway is the most important pathway involved in micro-environmental crosstalk and CLL cell survival. Further, it has been shown to interact with the signal transducer and activator of transcription 3 (STAT3) signalling pathway. The role of the STAT3 in CLL pathogenesis is unclear; however, it is constitutively phosphorylated on serine residue 727 (serine pSTAT3) in CLL cells. Here, we investigate the role of STAT3 in CLL cell survival and migration, using pharmacological inhibition and siRNA knockdown. Phospho-tyrosine and phospho-serine STAT3 were assessed by flow cytometry and western blotting. Apoptosis was assessed by Annexin V/Propidium Iodide staining by flow cytometry. The expression of cell surface markers involved in cell adhesion and homing was determined by multicolour flow cytometry. Stimulation of the BCR using immunoglobulin F(ab´)2 fragments induced tyrosine phosphorylation of STAT3 in CLL cells with unmutated immunoglobulin (IgVH) genes (n=7) but not mutated IgVH genes (n=5). This induced tyrosine phosphorylation was abrogated by pre-treatment with the Janus kinase (JAK) inhibitor Ruxolitinib and the BCR inhibitors Ibrutinib and Idelalisib (p<0.05, n=5). Gene expression studies using Taqman Assays showed BCR stimulation resulted in an upregulation of STAT3 regulated genes in CLL cells with unmutated IgVH genes. Interestingly, stimulation of BCR resulted in a significant increase in CD62L expression, which was inhibited by pre-treatment with Ibrutinib and Ruxolitinib (p<0.05, n=5). STAT3 inhibition was shown to have a divergent effect on CLL cell survival: In patient samples with >70% positive serine pSTAT3 cells, the STAT3 inhibitor cucurbitacin I induced apoptosis with a concurrent downregulation in serine phosphorylation (n=3); while in patient samples with <70% positive serine pSTAT3 cells, treatment with cucurbitacin I resulted in a decrease in apoptosis and a concurrent increase in serine phosphorylation (n=3). The STAT3 inhibitor S3I-201 had a similar effect but the upstream JAK inhibitor Ruxolitinib had no effect on serine phosphorylation and no effect on the apoptosis of CLL cells. In addition, siRNA mediated STAT3 knockdown and treatment with cucurbitacin I and S31-201, resulted in a significant decrease in CD62L positive CLL cells (p<0.0001, n=29). The role of STAT3 in CLL cell adhesion under shear flow conditions was investigated using a microfluidics system including a neMESYS Low Pressure syringe pump system and Human Umbilical Vein Endothelial Cells (HUVEC) coated biochips. Treatment of CLL cells with cucurbitacin I resulted in a significant decrease in adhesion to endothelial cells (p<0.001, n=4). The effect of STAT3 inhibition on the chemotaxis of CLL cells was investigated using Neuroprobe 96-well ChemoTx plates. Treatment with cucurbitacin I resulted in a significant decrease in CLL cells migrated in response to the chemokine CXCL12 compared to control (p=0.0001, n=8). In addition, treatment of CLL cells with CXCL12 resulted in an increase in serine pSTAT3 that was downregulated by pretreatment with cucurbitacin I. This study has shown: 1. Activation of STAT3 by BCR stimulation occurs in poor prognostic unmutated IgVH genes 2. Serine pSTAT3 has a role in cell survival in response to STAT3 inhibition 3. A role for STAT3 in CLL cell adhesion and migration, in particular in the regulation of the expression of CD62L. In conclusion, this study shows a role for the STAT3 pathway in cell survival and CLL cell-microenvironment crosstalk, suggesting therapeutic potential by interfering with the migration and homing of CLL cells to the lymph node and bone marrow microenvironments. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 221-221
Author(s):  
Xun Shang ◽  
Lina Li ◽  
Jose Concelas ◽  
Fukun Guo ◽  
Deidre Daria ◽  
...  

Abstract Hematopoietic stem/progenitor cells (HSPCs) are maintained by strictly regulated signals in the bone marrow microenvironment. One challenge in understanding the complex mode of HSPC regulation is to link intracellular signal components with extracellular stimuli. R-Ras is a member of the Ras family small GTPases. Previous mouse genetic studies suggest that R-Ras mRNA is primarily expressed in endothelial cells and R-Ras is involved in vascular angiogenesis. In clonal cell lines, although dominant mutant overexpression studies suggest a possible role of R-Ras in regulating cell adhesion and spreading, proliferation and/or differentiation in a cell-type dependent manner, it remains controversial whether R-Ras activity may promote or inhibit cell adhesion and migration. Here, in a mouse knockout model, we have examined the role of R-Ras in HSPC regulation by a combined in vivo and in vitro approach. Firstly, we found that R-Ras is expressed in the Lin− low density bone marrow cells of wild-type mice, and R-Ras activity in the cells is downregulated by cytokines and chemokines such as SCF and SDF-1a (∼ 20% and 40% of unstimulated control, respectively). Secondly, R-Ras deficiency did not significantly affect peripheral blood CBC, nor alter the frequency or distribution of long-term and short-term hematopoietic stem cells (defined by IL7Ra−Lin−Sca-1+c-Kit+CD34− and IL7Ra−Lin−Sca-1+c-Kit+CD34+ genotypes, respectively) in the bone marrow, peripheral blood and spleen. Competitive repopulation experiments using the wild-type and R-Ras−/− bone marrow cells at 1:1 ratio in lethally irradiated recipient mice showed no significant difference of blood cells of the two genotypes in the recipients up to 6 months post-transplantation. R-Ras−/− bone marrow cells did not show a detectable difference in colony forming unit activities assayed in the presence of various combinations of SCF, TPO, EPO, IL3, G-CSF and serum, compared with the matching wild-type cells. Thirdly, upon challenge with G-CSF, a HSPC mobilizing agent, R-Ras−/− mice demonstrated a markedly enhanced ability to mobilize HSPCs from bone marrow to peripheral blood as revealed by genotypic and colony-forming unit analyses (WT: 150 vs. KO: 320 per 200uL blood, p=0.018), and R-Ras−/− HSPCs exhibit significantly decreased homing activity (WT: 4.3% vs. KO: 2.8%, p&lt;0.001). Fourthly, isolated R-Ras−/− HSPCs displayed a constitutively assembled cortical actin cytoskeleton structure in the absence of cytokine or chemokine stimulation, similar to that of activated wild-type HSPCs. The R-Ras−/− HSPCs were defective in adhesion of cobblestone area-forming cells to a bone marrow-derived stroma cell line (FBMD-1) and in adhesion to fibronectin CH296 fragment, and showed a drastically increased ability to migrate toward a SDF-1a gradient (WT: 16% vs. KO: 38%, p&lt;0.001). These data point to a HSPC-intrinsic role of R-Ras in adhesion and migration. Finally, the functional changes of R-Ras−/− cells were associated with a ∼3 fold increase in Rac-GTP species and constitutively elevated Rac downstream signals of phsopho-PAK1 and phospho-myosin light chain. Partial inhibition of Rac activity by NSC23766, a Rac GTPase-specific inhibitor, readily reversed the migration phenotype under SDF-1a stimulation. Taken together, these studies demonstrate that R-Ras is a critical signal regulator for HSPC adhesion, homing, migration, and mobilization through a mechanism involving Rac GTPase-regulated cytoskeleton and adhesion machinery.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 4426-4426
Author(s):  
Adelina Ovcharenko ◽  
Galit Granot ◽  
Jeniffer Park ◽  
Ofer Shpilberg ◽  
Pia Raanani

Abstract Abstract 4426 Background/Aims: Despite improved prognosis of CML patients with the use of imatinib (IM), its administration is associated with extramedullary disease (EMD) occurrence. We postulate that, like in the metastatic processes, changes in migration and adherence potential may enable leukemic cells to inhabit extramedullary sites. Focal adhesion complexes linking between extracellular matrix and the cell cytoskeleton are likely to play an important role in these processes. Pyk2 is a tyrosine kinase highly expressed in hematopoietic cells, localized to focal adhesion complexes, and known to participate in adhesion and migration processes. We have previously shown that Pyk2 participates in NB4 (an acute promyelocytic leukemia [APL] cell line) cells' adhesion and migration following exposure to the APL targeted therapy ATRA. We postulate that similar to the effect of ATRA on NB4 cells, IM being also a targeted therapy, might also be associated with enhanced adhesion and migration abilities of the CML cell line K562. Our objectives were to identify the effect of IM administration on pyk2 expression and on K562 cell adhesion and migration ability and to establish the role of these changes in treatment-associated EMD. Results: We found a 2.6-fold increase in pyk2 mRNA expression in K562 cells following exposure to IM. We also found that 30% of IM-treated K562 cells adhered to fibronectin (FN) compared to untreated cells having no adhesion ability. In addition, a 3-fold induction in migration was seen in K562 cells following treatment. Furthermore, K562 cells treated with IM demonstrated a 2-fold increase in invasion potential as compared to untreated cells. In order to assess whether Pyk2 is essential for IM-dependent adhesion and migration of K562 cells, these cells were infected with pyk2 specific shRNAs. While 30% of the non-infected NB4 cells adhered to FN following IM treatment, only 12% of the pyk2-shRNA–infected K562 cells exhibited adhesion potential (Pvalue<0.002). In addition, we witnessed over a 3-fold reduction in the ability of pyk2-shRNA–infected K562 cells to migrate following exposure to IM when compared to parental K562 cells. These data support the role of Pyk2 in IM-mediated adhesion and migration. Finally, we found that IM treatment induced an in-vivo increase in pyk2 mRNA expression level in leukocytes derived from 3 out of 5 CML patients studied. Conclusions: IM induces K562 cell adhesion, migration and invasion accompanied by increased pyk2 expression. Pyk2 is one of the key proteins regulating IM-induced cell migration and adhesion. Collectively our data suggest a critical role of Pyk2 in adhesion and migration initiated by the targeted therapy IM and a possible role in EMD development. These data support a common mechanism for the development of EMD in hematological malignancies treated by targeted therapies via pyk2 expression. Disclosures: No relevant conflicts of interest to declare.


Traffic ◽  
2007 ◽  
Vol 8 (12) ◽  
pp. 1695-1705 ◽  
Author(s):  
Michelle M. Hill ◽  
Nadja Scherbakov ◽  
Natalia Schiefermeier ◽  
JoAnne Baran ◽  
John F. Hancock ◽  
...  

1974 ◽  
Vol 60 (1) ◽  
pp. 249-257 ◽  
Author(s):  
Jeffrey E. Froehlich ◽  
Martin Rachmeler

Incorporation of tritiated thymidine into acid-precipitable material was used to measure the rate of DNA synthesis in secondary cultures of human diploid fibroblasts. Confluent cultures of human diploid fibroblasts, which are synchronized in the G1 phase due to contact inhibition, were released from growth inhibition either by the addition of fresh medium to the cultures or by trypsinization and replating at nonconfluent densities. Either treatment resulted in a synchronous wave of DNA synthesis beginning 10–15 h after treatment and peaking at 20–25 h. In confluent cultures stimulated by fresh medium, either the addition of 0.25 mM N6, O2-dibutyryl-adenosine 3',5'-cyclic monophosphate (db-cAMP) to the medium in the interval 4–8 h after stimulation or the replacement of the fresh medium in that same 4 h interval with the depleted medium present on the cells for the 2 day period before stimulation delayed the synchronous onset of DNA synthesis in the cultures by about 4 h. In nonconfluent cultures freshly seeded from trypsinized confluent cultures, this same depleted medium obtained after a 2 day incubation of fresh medium on confluent cultures is shown to support the progress of the cells into S phase; however, the addition of 0.25 mM db-cAMP to the medium 3½ h after replating still partially prevented the initiation of DNA synthesis in the cultures. The results are discussed in terms of the role of serum and cAMP in the control of cell growth in fibroblast cultures.


Sign in / Sign up

Export Citation Format

Share Document