scholarly journals Calcium-sensitive, lipid-binding cytoskeletal proteins of the human placental microvillar region.

1987 ◽  
Vol 105 (1) ◽  
pp. 303-311 ◽  
Author(s):  
H C Edwards ◽  
A G Booth

In this study we describe a group of Ca2+-sensitive proteins located in the microvillar region of the human placental syncytiotrophoblast. By following the distribution of proteins between the particulate and supernatant phases of detergent-solubilized microvilli in the presence of defined concentrations of free Ca2+, we demonstrate a class of proteins of subunit molecular weights 72,000, 69,000, 38,000, 36,000, and 32,000 that associate with both the cytoskeleton and lipid at high concentrations of free Ca2+. These proteins can be released from microvilli using EGTA-containing buffers. Although they do not bind to phenyl-Sepharose, they will bind to phospholipids immobilized on phenyl-Sepharose columns in a Ca2+-dependent manner and show a marked preference for phospholipids with negatively charged headgroups. The results provide evidence for a sequence of events which may occur within the microvillus as the localized concentration of intracellular free Ca2+ rises.

1992 ◽  
Vol 68 (05) ◽  
pp. 570-576 ◽  
Author(s):  
Mary A Selak

SummaryWe have previously demonstrated that human neutrophil cathepsin G is a strong platelet agonist that binds to a specific receptor. This work describes the effect of neutrophil elastase on cathepsin G-induced platelet responses. While platelets were not activated by high concentrations of neutrophil elastase by itself, elastase enhanced aggregation, secretion and calcium mobilization induced by low concentrations of cathepsin G. Platelet aggregation and secretion were potentiated in a concentration-dependent manner by neutrophil elastase with maximal responses observable at 200 nM. Enhancement was observed when elastase was preincubated with platelets for time intervals of 10–60 s prior to addition of a low concentration of cathepsin G and required catalytically-active elastase since phenylmethanesulphonyl fluoride-inhibited enzyme failed to potentiate cell activation. Neutrophil elastase potentiation of platelet responses induced by low concentrations of cathepsin G was markedly inhibited by creatine phosphate/creatine phosphokinase and/or indomethacin, indicating that the synergism between elastase and cathepsin G required the participation of ADP and thromboxane A2. On the other hand, platelet responses were not attenuated by the PAF antagonist BN 52021, signifying that PAF-acether did not play a role in elastase potentiation. At higher concentrations porcine pancreatic elastase exhibits similar effects to neutrophil elastase, demonstrating that the effect of elastase was not unique to the neutrophil protease. While neutrophil elastase failed to alter the ability of cathepsin G to hydrolyze a synthetic chromogenic substrate, preincubation of platelets with elastase increased the apparent affinity of cathepsin G binding to platelets. In contrast to their effect on cathepsin G-induced platelet responses, neither neutrophil nor pancreatic elasatse potentiated aggregation or dense granule release initiated by ADP, PAF-acether, arachidonic acid or U46619, a thromboxane A2 mimetic. Moreover, unlike its effect on cathepsin G, neutrophil elastase inhibited thrombin-induced responses. The current observations demonstrate that elastase can potentiate platelet responses mediated by low concentrations of cathepsin G, suggesting that both enzymes may function synergistically to activate platelets under conditions where neutrophil degranulation occurs.


2020 ◽  
Vol 20 (4) ◽  
pp. 307-317
Author(s):  
Yuan Yang ◽  
Jin Huang ◽  
Jianzhong Li ◽  
Huansheng Yang ◽  
Yulong Yin

Background: Butyric acid (BT), a short-chain fatty acid, is the preferred colonocyte energy source. The effects of BT on the differentiation, proliferation, and apoptosis of small intestinal epithelial cells of piglets and its underlying mechanisms have not been fully elucidated. Methods: In this study, it was found that 0.2-0.4 mM BT promoted the differentiation of procine jejunal epithelial (IPEC-J2) cells. BT at 0.5 mM or higher concentrations significantly impaired cell viability in a dose- and time-dependent manner. In addition, BT at high concentrations inhibited the IPEC-J2 cell proliferation and induced cell cycle arrest in the G2/M phase. Results: Our results demonstrated that BT triggered IPEC-J2 cell apoptosis via the caspase8-caspase3 pathway accompanied by excess reactive oxygen species (ROS) and TNF-α production. BT at high concentrations inhibited cell autophagy associated with increased lysosome formation. It was found that BT-reduced IPEC-J2 cell viability could be attenuated by p38 MAPK inhibitor SB202190. Moreover, SB202190 attenuated BT-increased p38 MAPK target DDIT3 mRNA level and V-ATPase mRNA level that were responsible for normal acidic lysosomes. Conclusion: In conclusion, 1) at 0.2-0.4 mM, BT promotes the differentiation of IPEC-J2 cells; 2) BT at 0.5 mM or higher concentrations induces cell apoptosis via the p38 MAPK pathway; 3) BT inhibits cells autophagy and promotes lysosome formation at high concentrations.


Author(s):  
M. Focker ◽  
H. J. van der Fels-Klerx ◽  
A. G. J. M. Oude Lansink

AbstractEarly 2013, high concentrations of aflatoxin M1 were found in the bulk milk of a few dairy farms in the Netherlands. These high concentrations were caused by aflatoxin B1 contaminated maize from Eastern Europe that was processed into compound feed, which was fed to dairy cows. Since the contamination was discovered in the downstream stages of the supply chain, multiple countries and parties were involved and recalls of the feed were necessary, resulting into financial losses. The aim of this study was to estimate the direct short-term financial losses related to the 2013 aflatoxin incident for the maize traders, the feed industry, and the dairy sector in the Netherlands. First, the sequence of events of the incident was retrieved. Then, a Monte Carlo simulation model was built to combine the scarce and uncertain data to estimate the direct financial losses for each stakeholder. The estimated total direct financial losses of this incident were estimated to be between 12 and 25 million euros. The largest share, about 60%, of the total losses was endured by the maize traders. About 39% of the total losses were for the feed industry, and less than 1% of the total losses were for the dairy sector. The financial losses estimated in this study should be interpreted cautiously due to limitations associated with the quality of the data used. Furthermore, this incident led to indirect long-term financial effects, identified but not estimated in this study.


1997 ◽  
Vol 8 (3) ◽  
pp. 533-545 ◽  
Author(s):  
T Harder ◽  
R Kellner ◽  
R G Parton ◽  
J Gruenberg

Annexin II is an abundant protein which is present in the cytosol and on the cytoplasmic face of plasma membrane and early endosomes. It is generally believed that this association occurs via Ca(2+)-dependent binding to lipids, a mechanism typical for the annexin protein family. Although previous studies have shown that annexin II is involved in early endosome dynamics and organization, the precise biological role of the protein is unknown. In this study, we found that approximately 50% of the total cellular annexin was associated with membranes in a Ca(2+)-independent manner. This binding was extremely tight, since it resisted high salt and, to some extent, high pH treatments. We found, however, that membrane-associated annexin II could be quantitatively released by low concentrations of the cholesterol-sequestering agents filipin and digitonin. Both treatments released an identical and limited set of proteins but had no effects on other membrane-associated proteins. Among the released proteins, we identified, in addition to annexin II itself, the cortical cytoskeletal proteins alpha-actinin, ezrin and moesin, and membrane-associated actin. Our biochemical and immunological observations indicate that these proteins are part of a complex containing annexin II and that stability of the complex is sensitive to cholesterol sequestering agents. Since annexin II is tightly membrane-associated in a cholesterol-dependent manner, and since it seems to interact physically with elements of the cortical actin cytoskeleton, we propose that the protein serves as interface between membranes containing high amounts of cholesterol and the actin cytoskeleton.


Medicines ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 123 ◽  
Author(s):  
Jun-Xian Zhou ◽  
Michael Wink

Background: We studied the effect of three plant extracts (Glycyrrhiza glabra, Paeonia lactiflora, Eriobotrya japonica) and six of their major secondary metabolites (glycyrrhizic acid, 18β glycyrrhetinic acid, liquiritigenin, isoliquiritigenin, paeoniflorin, ursolic acid) on the multidrug resistant human colon cancer cell line Caco-2 and human leukemia cell line CEM/ADR 5000 as compared to the corresponding sensitive cell line CCRF-CEM, and human colon cancer cells HCT-116, which do not over-express ATP-binding cassette (ABC) transporters. Methods: The cytotoxicity of single substances in sensitive and resistant cells was investigated by MTT assay. We also applied combinations of extracts or single compounds with the chemotherapeutic agent doxorubicin or doxorubicin plus the saponin digitonin. The intracellular retention of the ABC transporter substrates rhodamine 123 and calcein was examined by flow cytometry to explore the effect of the substances on the activity of ABC transporters P-glycoprotein and MRP1. Real-time PCR was applied to analyse the gene expression changes of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 in resistant cells under the treatment of the substances. Results: All the substances moderately inhibited cell growth in sensitive and resistant cells to some degree. Whereas ursolic acid showed IC50 of 14 and 22 µM in CEM/ADR 5000 and Caco-2 cells, respectively, glycyrrhizic acid and paeoniflorin were inactive with IC50 values above 400 μM. Except for liquiritigenin and isoliquiritigenin, all the other substances reversed MDR in CEM/ADR 5000 and Caco-2 cells to doxorubicin. Ue, ga, 18ga, and urs were powerful reversal agents. In CEM/ADR 5000 cells, high concentrations of all the substances, except Paeonia lactiflora extract, increased calcein or rhodamine 123 retention in a dose-dependent manner. In Caco-2 cells, all the substances, except liquiritigenin, retained rhodamine 123 in a dose-dependent manner. We also examined the effect of the plant secondary metabolite (PSM) panel on the expression of ABCB1, ABCC1, caspase 3, caspase 8, AhR, CYP1A1, and GSTP1 genes in MDR cells. Conclusions: The extracts and individual PSM could reverse MDR in CEM/ADR 5000 and Caco-2 cells, which overexpress ABC transporters, in two- and three-drug combinations. Most of the PSM also inhibited the activity of ABC transporters to some degree, albeit at high concentrations. Ue, ga, 18ga, and urs were identified as potential multidrug resistance (MDR) modulator candidates, which need to be characterized and validated in further studies.


1978 ◽  
Vol 169 (3) ◽  
pp. 567-575 ◽  
Author(s):  
Wendy Cammer ◽  
Lesley Z. Bieler ◽  
William T. Norton

Degradation of myelin basic protein during incubations with high concentrations of horseradish peroxidase has been demonstrated [Johnson & Cammer (1977) J. Histochem. Cytochem.25, 329–336]. Possible mechanisms for the interaction of the basic protein with peroxidase were investigated in the present study. Because the peroxidase samples previously observed to degrade basic protein were mixtures of isoenzymes, commercial preparations of the separated isoenzymes were tested, and all three degraded basic protein, but to various extents. Three other basic proteins, P2 protein from peripheral nerve myelin, lysozyme and cytochrome c, were not degraded by horseradish peroxidase under the same conditions. Inhibitor studies suggested a minor peroxidatic component in the reaction. Therefore the peroxidatic reaction with basic protein was studied by using low concentrations of peroxidase along with H2O2. Horseradish peroxidase plus H2O2 caused the destruction of basic protein, a reaction inhibited by cyanide, azide, ferrocyanide, tyrosine, di-iodotyrosine and catalase. Lactoperoxidase plus H2O2 and myoglobin plus H2O2 were also effective in destroying the myelin basic protein. Low concentrations of horseradish peroxidase plus H2O2 were not active against other basic proteins, but did destroy casein and fibrinogen. Although high concentrations of peroxidase alone degraded basic protein to low-molecular-weight products, suggesting the operation of a proteolytic enzyme contaminant in the absence of H2O2, incubations with catalytic concentrations of peroxidase in the presence of H2O2 converted basic protein into products with high molecular weights. Our data suggest a mechanism for the latter, peroxidatic, reaction where polymers would form by linking the tyrosine side chains in basic-protein molecules. These data show that the myelin basic protein is unusually susceptible to peroxidatic reactions.


2020 ◽  
Author(s):  
Shouan Zhu ◽  
Albert Batushansky ◽  
Anita Jopkiewicz ◽  
Dawid Makosa ◽  
Kenneth M. Humphries ◽  
...  

ABSTRACTObjectiveObesity accelerates the development of osteoarthritis (OA) during aging and is associated with altered chondrocyte cellular metabolism. The objective of this study was to investigate the role of sirtuin 5 (SIRT5) in regulating chondrocyte protein lysine malonylation (MaK) and cellular metabolism under obesity-related conditions.MethodsMaK and SIRT5 were immunostained in knee articular cartilage of obese db/db mice and different aged C57BL6 mice with or without destabilization of the medial meniscus (DMM) surgery to induce OA. Primary chondrocytes were isolated from 7-day-old WT and Sirt5−/− mice and treated with varying concentrations of glucose and insulin to mimic obesity. Sirt5-dependent effects on MaK and metabolism were evaluated by Western blot, Seahorse Respirometry, and gas/chromatography-mass/spectrometry (GC-MS) metabolic profiling.ResultsMaK was significantly increased in cartilage of db/db mice and in chondrocytes treated with high concentrations of glucose and insulin (GluhiInshi). Sirt5 protein was increased in an age-dependent manner following joint injury, and Sirt5 deficient primary chondrocytes had increased MaK, decreased glycolysis rate, and reduced basal mitochondrial respiration. GC-MS identified 41 metabolites. Sirt5 deficiency altered 13 distinct metabolites under basal conditions and 18 metabolites under GluhiInshi treatment. Pathway analysis identified a wide range of Sirt5-dependent altered metabolic pathways that include amino acid metabolism, TCA cycle, and glycolysis.ConclusionThis study provides the first evidence that Sirt5 broadly regulates chondrocyte metabolism. We observed changes in Sirt5 and MaK levels in cartilage with obesity and joint injury, suggesting that the Sirt5-MaK pathway may contribute to altered chondrocyte metabolism that occurs during OA development.


1999 ◽  
Vol 6 (6) ◽  
pp. 946-952 ◽  
Author(s):  
Abhay Srinivasan ◽  
Yawei Ni ◽  
Ian Tizard

ABSTRACT Immune responses to the carbohydrate components of microorganisms, mediated both by antibodies and by lectins, are an important part of host defense. In the present experiments, the specificity and presence of natural bovine antibodies against mannan, a common fungal antigen, were examined by enzyme-linked immunosorbent assay (ELISA), usingSaccharomyces cerevisiae mannan as an antigen. The results showed that all serum samples from animals of three age groups (newborn, calf, and adult) tested contained antimannan antibodies, and the titer of these antibodies increased significantly in adults. However, titers among individual adult cattle differed widely. Inhibition assays showed that yeast mannan was the strongest inhibitor.d-Mannose exhibited only a minor inhibitory effect at high concentrations. This suggests that most of these antibodies recognize an oligosaccharide-based epitope(s) different from those recognized by lectins. Cattle possess three serum C-type lectins (collectins) capable of recognizing mannan in a calcium-dependent manner. Addition of EDTA to the reaction did not reduce antibody binding, suggesting that the binding of these antibodies to mannan was not affected by the presence of collectin. The antibodies purified from either calf or adult serum by mannan-Sepharose affinity chromatography consisted of mainly immunoglobulin G (IgG) and a smaller amount of IgM. IgG1 was shown to be the dominant antimannan IgG isotype by isotype-specific ELISA. Together, these results demonstrate the production of natural antimannan antibodies in cattle in an age-dependent manner. These antibodies might be involved in defending the host against mannan-containing pathogens as a specific line of defense in conjunction with the innate response by lectins.


2011 ◽  
Vol 63 (3) ◽  
pp. 717-721
Author(s):  
Fan Yang ◽  
Zhiwei Yang ◽  
Jianbo Xiao

A preparation of crude polysaccharides (TPS) was isolated from Camellia sinensis by precipitation and ultrafiltration. TPS1, TPS2, and TPS3 had molecular weights of 240, 21.4, and 2.46 kDa, respectively. The radical scavenging activities of TPS were evaluated by DPPH free radical, hydroxyl radical and superoxide radical scavenging. These results revealed that TPS exhibited strong radical scavenging activity in a concentration-dependent manner. TPS3 with lowest molecular weight showed a higher radical scavenging activity.


1989 ◽  
Vol 93 (1) ◽  
pp. 123-131
Author(s):  
NANCY J. LANE ◽  
STEPHEN M. DILWORTH

Septate junctions are found only in invertebrate tissues, and are almost ubiquitous within them. In arthropods, the two major types are the ‘pleated’ and the ‘smooth’ varieties. Using tissues from different species, including the cockroach Periplaneta americana, procedures have been established for obtaining membrane fractions selectively enriched in septate junctions. The junctions have been identified in pellets of these fractions by both thin sectioning and freeze-fracturing. SDS-PAGE of these membrane fractions reveals two major polypeptide species with apparent molecular weights of 22000–24000 and 17000–18000. Consistent differences in these apparent molecular weights are observed between the pleated and smooth varieties of septate junction. These polypeptides are probably integral membrane components, as they remain associated after treatment with high concentrations of urea. Evidence suggests a plane of weakness in the mid-line of the extracellular septal ribbons.


Sign in / Sign up

Export Citation Format

Share Document