scholarly journals Regulation of extracellular matrix assembly: in vitro reconstitution of a partial fertilization envelope from isolated components.

1987 ◽  
Vol 105 (1) ◽  
pp. 561-567 ◽  
Author(s):  
P J Weidman ◽  
B M Shapiro

At fertilization, the glycocalyx (vitelline layer) of the sea urchin egg is transformed into an elevated fertilization envelope by the association of secreted peptides and the formation of intermolecular dityrosine bonds. Dityrosine cross-links are formed by a secreted ovoperoxidase that exists in a Ca2+-stabilized complex with proteoliaisin in the fertilization envelope. By using purified proteins, we now show that proteoliaisin is necessary and sufficient to link ovoperoxidase to the egg glycocalyx. Specifically, we have found that ovoperoxidase can associate with the vitelline layer only when complexed with proteoliaisin; proteoliaisin binds to the vitelline layer independently of its association with ovoperoxidase; proteolytic modification of the vitelline layer is not required for this interaction to occur; the binding of proteoliaisin to the vitelline layer is mediated by the synergistic action of the two major seawater divalent cations, Ca2+ and Mg2+; the number of proteoliaisin-binding sites on the vitelline layer of unfertilized eggs is equivalent to the amount of proteoliaisin secreted at fertilization; and the binding of ovoperoxidase to the vitelline layer, via proteoliaisin, permits the in vitro cross-linking of these two in vivo substrates. The association of purified ovoperoxidase and proteoliaisin with the vitelline layer of unfertilized eggs reconstitutes part of the morphogenesis of the fertilization envelope.

2000 ◽  
Vol 14 (2) ◽  
pp. 158-162 ◽  
Author(s):  
Richard I. Dorsky ◽  
David W. Raible ◽  
Randall T. Moon

We have shown that Wnt signals are necessary and sufficient for neural crest cells to adopt pigment cell fates. nacre, a zebrafish homolog of MITF, is required for pigment cell differentiation. We isolated a promoter region of nacre that contains Tcf/Lef binding sites, which can mediate Wnt responsiveness. This promoter binds to zebrafish Lef1 protein in vitro, and a nacre reporter construct is strongly repressed by dominant-negative Tcf in melanoma cells. Mutation of Tcf/Lef sites abolishes Lef1 binding and reporter function in vivo. Wnt signaling therefore directly activatesnacre, which in turn leads to pigment cell differentiation.


1985 ◽  
Vol 63 (2) ◽  
pp. 128-136
Author(s):  
Deborah A. Brown ◽  
Robert A. Cook

The effects of K+ and various anions on the catalytic and regulatory properties of the NADP-specific malic enzyme of Escherichia coli are reported. Studies on the susceptibility of the enzyme to proteolysis indicate that K+ binds directly to the enzyme with a resultant change in enzyme conformation. Kinetic studies indicate that the binding of optimal concentrations of K+ results in activation of the enzyme, increasing both the Vmax and the affinity of the enzyme for divalent cations. The inhibition of enzyme activity observed at KCl concentrations greater than 50 mM is shown to be nonspecific, resulting from increasing ionic strength. The mixed cooperativity between malate-binding sites previously reported at optimal K+ concentration is more pronounced at nonoptimal K+ concentrations (0 and 150 mM). The regulatory effect of metal cofactors and the mixed cooperativity between malate-binding sites is abolished when kinetic studies are conducted at low ionic strength or in the presence of acetate. Acetate appears to act as an activator, increasing the affinity of the enzyme for malate and protecting the enzyme against the inhibition caused by high ionic strength. It is postulated that the enzyme is operating in vivo in a partially inhibited state owing to the ionic strength of the cytoplasm. The kinetic studies conducted at higher ionic strength in vitro are therefore more applicable to the in vivo situation.


2003 ◽  
Vol 163 (5) ◽  
pp. 1045-1055 ◽  
Author(s):  
Patricia A. Loomis ◽  
Lili Zheng ◽  
Gabriella Sekerková ◽  
Benjarat Changyaleket ◽  
Enrico Mugnaini ◽  
...  

The espin actin-bundling proteins, which are the target of the jerker deafness mutation, caused a dramatic, concentration-dependent lengthening of LLC-PK1-CL4 cell microvilli and their parallel actin bundles. Espin level was also positively correlated with stereocilium length in hair cells. Villin, but not fascin or fimbrin, also produced noticeable lengthening. The espin COOH-terminal peptide, which contains the actin-bundling module, was necessary and sufficient for lengthening. Lengthening was blocked by 100 nM cytochalasin D. Espin cross-links slowed actin depolymerization in vitro less than twofold. Elimination of an actin monomer-binding WASP homology 2 domain and a profilin-binding proline-rich domain from espin did not decrease lengthening, but made it possible to demonstrate that actin incorporation was restricted to the microvillar tip and that bundles continued to undergo actin treadmilling at ∼1.5 s−1 during and after lengthening. Thus, through relatively subtle effects on actin polymerization/depolymerization reactions in a treadmilling parallel actin bundle, espin cross-links cause pronounced barbed-end elongation and, thereby, make a longer bundle without joining shorter modules.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pia Montanucci ◽  
Silvia Terenzi ◽  
Claudio Santi ◽  
Ilaria Pennoni ◽  
Vittorio Bini ◽  
...  

Alginate-based microencapsulation of live cells may offer the opportunity to treat chronic and degenerative disorders. So far, a thorough assessment of physical-chemical behavior of alginate-based microbeads remains cloudy. A disputed issue is which divalent cation to choose for a high performing alginate gelling process. Having selected, in our system, high mannuronic (M) enriched alginates, we studied different gelling cations and their combinations to determine their eventual influence on physical-chemical properties of the final microcapsules preparation,in vitroandin vivo. We have shown that used of ultrapure alginate allows for high biocompatibility of the formed microcapsules, regardless of gelation agents, while use of different gelling cations is associated with corresponding variable effects on the capsules’ basic architecture, as originally reported in this work. However, only the final application which the capsules are destined to will ultimately guide the selection of the ideal, specific gelling divalent cations, since in principle there are no capsules that are better than others.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Liang Ge ◽  
David Melville ◽  
Min Zhang ◽  
Randy Schekman

Autophagy is a catabolic process for bulk degradation of cytosolic materials mediated by double-membraned autophagosomes. The membrane determinant to initiate the formation of autophagosomes remains elusive. Here, we establish a cell-free assay based on LC3 lipidation to define the organelle membrane supporting early autophagosome formation. In vitro LC3 lipidation requires energy and is subject to regulation by the pathways modulating autophagy in vivo. We developed a systematic membrane isolation scheme to identify the endoplasmic reticulum–Golgi intermediate compartment (ERGIC) as a primary membrane source both necessary and sufficient to trigger LC3 lipidation in vitro. Functional studies demonstrate that the ERGIC is required for autophagosome biogenesis in vivo. Moreover, we find that the ERGIC acts by recruiting the early autophagosome marker ATG14, a critical step for the generation of preautophagosomal membranes.


1993 ◽  
Vol 13 (4) ◽  
pp. 2091-2103
Author(s):  
S Türkel ◽  
P J Farabaugh

Transcription of the Ty2-917 retrotransposon of Saccharomyces cerevisiae is modulated by a complex set of positive and negative elements, including a negative region located within the first open reading frame, TYA2. The negative region includes three downstream repression sites (DRSI, DRSII, and DRSIII). In addition, the negative region includes at least two downstream activation sites (DASs). This paper concerns the characterization of DASI. A 36-bp DASI oligonucleotide acts as an autonomous transcriptional activation site and includes two sequence elements which are both required for activation. We show that these sites bind in vitro the transcriptional activation protein GCN4 and that their activity in vivo responds to the level of GCN4 in the cell. We have termed the two sites GCN4 binding sites (GBS1 and GBS2). GBS1 is a high-affinity GCN4 binding site (dissociation constant, approximately 25 nM at 30 degrees C), binding GCN4 with about the affinity of a consensus UASGCN4, this though GBS1 includes two differences from the right half of the palindromic consensus site. GBS2 is more diverged from the consensus and binds GCN4 with about 20-fold-lower affinity. Nucleotides 13 to 36 of DASI overlap DRSII. Since DRSII is a transcriptional repression site, we tested whether DASI includes repression elements. We identify two sites flanking GBS2, both of which repress transcription activated by the consensus GCN4-specific upstream activation site (UASGCN4). One of these is repeated in the 12 bp immediately adjacent to DASI. Thus, in a 48-bp region of Ty2-917 are interspersed two positive and three negative transcriptional regulators. The net effect of the region must depend on the interaction of the proteins bound at these sites, which may include their competing for binding sites, and on the physiological control of the activity of these proteins.


2003 ◽  
Vol 284 (2) ◽  
pp. G328-G339 ◽  
Author(s):  
P. Singh ◽  
X. Lu ◽  
S. Cobb ◽  
B. T. Miller ◽  
N. Tarasova ◽  
...  

Proliferation and carcinogenesis of the large intestinal epithelial cells (IEC) cells is significantly increased in transgenic mice that overexpress the precursor progastrin (PG) peptide. It is not known if the in vivo growth effects of PG on IEC cells are mediated directly or indirectly. Full-length recombinant human PG (rhPG1–80) was generated to examine possible direct effects of PG on IEC cells. Surprisingly, rhPG (0.1–1.0 nM) was more effective than the completely processed gastrin 17 (G17) peptide as a growth factor. Even though IEC cells did not express CCK1and CCK2receptors (-R), fluorescently labeled G17 and Gly-extended G17 (G-Gly) were specifically bound to the cells, suggesting the presence of binding proteins other than CCK1-R and CCK2-R on IEC cells. High-affinity ( Kd= 0.5–1.0 nM) binding sites for125I-rhPG were discovered on IEC cells that demonstrated relative binding affinity for gastrin-like peptides in the order PG ≥ COOH-terminally extended G17 ≥ G-Gly > G17 > *CCK-8 (* significant difference; P< 0.05). In conclusion, our studies demonstrate for the first time direct growth effects of the full-length precursor peptide on IEC cells in vitro that are apparently mediated by the high-affinity PG binding sites that were discovered on these cells.


2012 ◽  
Vol 449 (2) ◽  
pp. 333-341 ◽  
Author(s):  
Chiara Saggioro ◽  
Anne Olliver ◽  
Bianca Sclavi

The DnaA protein is a key factor for the regulation of the timing and synchrony of initiation of bacterial DNA replication. The transcription of the dnaA gene in Escherichia coli is regulated by two promoters, dnaAP1 and dnaAP2. The region between these two promoters contains several DnaA-binding sites that have been shown to play an important role in the negative auto-regulation of dnaA expression. The results obtained in the present study using an in vitro and in vivo quantitative analysis of the effect of mutations to the high-affinity DnaA sites reveal an additional effect of positive autoregulation. We investigated the role of transcription autoregulation in the change of dnaA expression as a function of temperature. While negative auto-regulation is lost at dnaAP1, the effects of both positive and negative autoregulation are maintained at the dnaAP2 promoter upon lowering the growth temperature. These observations can be explained by the results obtained in vitro showing a difference in the temperature-dependence of DnaA–ATP binding to its high- and low-affinity sites, resulting in a decrease in DnaA–ATP oligomerization at lower temperatures. The results of the present study underline the importance of the role for autoregulation of gene expression in the cellular adaptation to different growth temperatures.


2018 ◽  
Author(s):  
Alina Munteanu ◽  
Neelanjan Mukherjee ◽  
Uwe Ohler

AbstractMotivationRNA-binding proteins (RBPs) regulate every aspect of RNA metabolism and function. There are hundreds of RBPs encoded in the eukaryotic genomes, and each recognize its RNA targets through a specific mixture of RNA sequence and structure properties. For most RBPs, however, only a primary sequence motif has been determined, while the structure of the binding sites is uncharacterized.ResultsWe developed SSMART, an RNA motif finder that simultaneously models the primary sequence and the structural properties of the RNA targets sites. The sequence-structure motifs are represented as consensus strings over a degenerate alphabet, extending the IUPAC codes for nucleotides to account for secondary structure preferences. Evaluation on synthetic data showed that SSMART is able to recover both sequence and structure motifs implanted into 3‘UTR-like sequences, for various degrees of structured/unstructured binding sites. In addition, we successfully used SSMART on high-throughput in vivo and in vitro data, showing that we not only recover the known sequence motif, but also gain insight into the structural preferences of the RBP.AvailabilitySSMART is freely available at https://ohlerlab.mdc-berlin.de/software/SSMART_137/[email protected]


Sign in / Sign up

Export Citation Format

Share Document