scholarly journals Biosynthesis and interconversion of Drosophila nuclear lamin isoforms during normal growth and in response to heat shock.

1987 ◽  
Vol 105 (2) ◽  
pp. 771-790 ◽  
Author(s):  
D E Smith ◽  
Y Gruenbaum ◽  
M Berrios ◽  
P A Fisher

Two major immunocross-reactive polypeptides of the Drosophila nuclear envelope, distinguishable in interphase cells on the basis of one-dimensional SDS-PAGE mobility, have been localized to the nuclear lamina by immunoelectron microscopy. These have been designated lamins Dm1 and Dm2. Both lamins are apparently derived posttranslationally from a single, primary translation product, lamin Dm0. A pathway has been established whereby lamin Dm0 is processed almost immediately upon synthesis in the cytoplasm to lamin Dm1. Processing occurs posttranslationally, is apparently proteolytic, and has been reconstituted from cell-free extracts in vitro. Processing in vitro is ATP dependent. Once assembled into the nuclear envelope, a portion of lamin Dm1 is converted into lamin Dm2 by differential phosphorylation. Throughout most stages of development and in Schneider 2 tissue culture cells, both lamin isoforms are present in approximately equal abundance. However, during heat shock, lamin Dm2 is converted nearly quantitatively into lamin Dm1. Implications for understanding the regulation of nuclear lamina plasticity through normal growth and in response to heat shock are discussed.

Cells ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 162
Author(s):  
Marianne Grafe ◽  
Petros Batsios ◽  
Irene Meyer ◽  
Daria Lisin ◽  
Otto Baumann ◽  
...  

Nuclear lamins are nucleus-specific intermediate filaments (IF) found at the inner nuclear membrane (INM) of the nuclear envelope (NE). Together with nuclear envelope transmembrane proteins, they form the nuclear lamina and are crucial for gene regulation and mechanical robustness of the nucleus and the whole cell. Recently, we characterized Dictyostelium NE81 as an evolutionarily conserved lamin-like protein, both on the sequence and functional level. Here, we show on the structural level that the Dictyostelium NE81 is also capable of assembling into filaments, just as metazoan lamin filament assemblies. Using field-emission scanning electron microscopy, we show that NE81 expressed in Xenopous oocytes forms filamentous structures with an overall appearance highly reminiscent of Xenopus lamin B2. The in vitro assembly properties of recombinant His-tagged NE81 purified from Dictyostelium extracts are very similar to those of metazoan lamins. Super-resolution stimulated emission depletion (STED) and expansion microscopy (ExM), as well as transmission electron microscopy of negatively stained purified NE81, demonstrated its capability of forming filamentous structures under low-ionic-strength conditions. These results recommend Dictyostelium as a non-mammalian model organism with a well-characterized nuclear envelope involving all relevant protein components known in animal cells.


Author(s):  
Liziyyannida Liziyyannida ◽  
Wibi Riawan

Heat Shock Protein 27 (Hsp27) is overexpressed in cervical cancer as a response to stress conditions. Hsp27 overexpression increase invasion, migration, and adhesion pathways of cancer cells. The Yogurt supernatant contains Short-Chain Fatty Acids (SCFA) include acetate, lactate, and butyrate which have anticancer activity. This study aimed to investigate supernatant of LBA-ST (Lactobacillusbulgaricus-acidophilus, Streptococcusthermophillus) Yogurt can decrease the expression of Hsp27 in HeLa culture cells. The mechanism on how supernatant yogurt inhibit invasion, migration, and adhesion was studied by immunocytochemistry. The data was then collected and analyzed using One-Way ANOVA. From this study, it can be concluded that the expression of proteins that play a role in invasion, adhesion, and migration of the Hsp27 was proven to be decreased (p< 0.05 ± 0.005).Keywords: HeLa cells, yogurt supernatant, Lactobacillus bulgaricus-acidophilus, Streptococcus thermophillus, Hsp27


2000 ◽  
Vol 11 (7) ◽  
pp. 2335-2347 ◽  
Author(s):  
Desmond C. Raitt ◽  
Anthony L. Johnson ◽  
Alexander M. Erkine ◽  
Kozo Makino ◽  
Brian Morgan ◽  
...  

The Skn7 response regulator has previously been shown to play a role in the induction of stress-responsive genes in yeast, e.g., in the induction of the thioredoxin gene in response to hydrogen peroxide. The yeast Heat Shock Factor, Hsf1, is central to the induction of another set of stress-inducible genes, namely the heat shock genes. These two regulatory trans-activators, Hsf1 and Skn7, share certain structural homologies, particularly in their DNA-binding domains and the presence of adjacent regions of coiled-coil structure, which are known to mediate protein–protein interactions. Here, we provide evidence that Hsf1 and Skn7 interact in vitro and in vivo and we show that Skn7 can bind to the same regulatory sequences as Hsf1, namely heat shock elements. Furthermore, we demonstrate that a strain deleted for the SKN7 gene and containing a temperature-sensitive mutation in Hsf1 is hypersensitive to oxidative stress. Our data suggest that Skn7 and Hsf1 cooperate to achieve maximal induction of heat shock genes in response specifically to oxidative stress. We further show that, like Hsf1, Skn7 can interact with itself and is localized to the nucleus under normal growth conditions as well as during oxidative stress.


2017 ◽  
Vol 199 (7) ◽  
Author(s):  
Jordan B. Jastrab ◽  
Marie I. Samanovic ◽  
Richard Copin ◽  
Bo Shopsin ◽  
K. Heran Darwin

ABSTRACT Mycobacterium tuberculosis uses a proteasome to degrade proteins by both ATP-dependent and -independent pathways. While much has been learned about ATP-dependent degradation, relatively little is understood about the ATP-independent pathway, which is controlled by Mycobacterium tuberculosis proteasome accessory factor E (PafE). Recently, we found that a Mycobacterium tuberculosis pafE mutant has slowed growth in vitro and is sensitive to killing by heat stress. However, we did not know if these phenotypes were caused by an inability to degrade the PafE-proteasome substrate HspR (heat shock protein repressor), an inability to degrade any damaged or misfolded proteins, or a defect in another protein quality control pathway. To address this question, we characterized pafE suppressor mutants that grew similarly to pafE + bacteria under normal culture conditions. All but one suppressor mutant analyzed contained mutations that inactivated HspR function, demonstrating that the slowed growth and heat shock sensitivity of a pafE mutant were caused primarily by the inability of the proteasome to degrade HspR. IMPORTANCE Mycobacterium tuberculosis encodes a proteasome that is highly similar to eukaryotic proteasomes and is required for virulence. We recently discovered a proteasome cofactor, PafE, which is required for the normal growth, heat shock resistance, and full virulence of M. tuberculosis. In this study, we demonstrate that PafE influences this phenotype primarily by promoting the expression of protein chaperone genes that are necessary for surviving proteotoxic stress.


1991 ◽  
Vol 112 (4) ◽  
pp. 523-533 ◽  
Author(s):  
G Dessev ◽  
C Iovcheva-Dessev ◽  
J R Bischoff ◽  
D Beach ◽  
R Goldman

Cell-free extracts prepared from activated clam oocytes contain factors which induce phosphorylation of the single 67-kD lamin (L67), disassemble clam oocyte nuclei, and cause chromosome condensation in vitro (Dessev, G., R. Palazzo, L. Rebhun, and R. Goldman. 1989. Dev. Biol. 131:469-504). To identify these factors, we have fractionated the oocyte extracts. The nuclear lamina disassembly (NLD) activity, together with a protein kinase activity specific for L67, appear as a single peak throughout a number of purification steps. This peak also contains p34cdc2, cyclin B, and histone H1-kinase activity, which are components of the M-phase promoting factor (MPF). The NLD/L67-kinase activity is depleted by exposure of this purified material to Sepharose conjugated to p13suc1, and is restored upon addition of a p34cdc2/p62 complex from HeLa cells. The latter complex phosphorylates L67 and induces NLD in the absence of other clam oocyte proteins. Our results suggest that a single protein kinase activity (p34cdc2-H1 kinase, identical with MPF) phosphorylates the lamin and is involved in the meiotic breakdown of the nuclear envelope in clam oocytes.


1999 ◽  
Vol 112 (6) ◽  
pp. 977-987 ◽  
Author(s):  
P. Collas

Molecular markers of the zebrafish inner nuclear membrane (NEP55) and nuclear lamina (L68) were identified, partially characterized and used to demonstrate that disassembly of the zebrafish nuclear envelope requires sequential phosphorylation events by first PKC, then Cdc2 kinase. NEP55 and L68 are immunologically and functionally related to human LAP2beta and lamin B, respectively. Exposure of zebrafish nuclei to meiotic cytosol elicits rapid phosphorylation of NEP55 and L68, and disassembly of both proteins. L68 phosphorylation is completely inhibited by simultaneous inhibition of Cdc2 and PKC and only partially blocked by inhibition of either kinase. NEP55 phosphorylation is completely prevented by inhibition or immunodepletion of cytosolic Cdc2. Inhibition of cAMP-dependent kinase, MEK or CaM kinase II does not affect NEP55 or L68 phosphorylation. In vitro, nuclear envelope disassembly requires phosphorylation of NEP55 and L68 by both mammalian PKC and Cdc2. Inhibition of either kinase is sufficient to abolish NE disassembly. Furthermore, novel two-step phosphorylation assays in cytosol and in vitro indicate that PKC-mediated phosphorylation of L68 prior to Cdc2-mediated phosphorylation of L68 and NEP55 is essential to elicit nuclear envelope breakdown. Phosphorylation elicited by Cdc2 prior to PKC prevents nuclear envelope disassembly even though NEP55 is phosphorylated. The results indicate that sequential phosphorylation events elicited by PKC, followed by Cdc2, are required for zebrafish nuclear disassembly. They also argue that phosphorylation of inner nuclear membrane integral proteins is not sufficient to promote nuclear envelope breakdown, and suggest a multiple-level regulation of disassembly of nuclear envelope components during meiosis and at mitosis.


1995 ◽  
Vol 108 (5) ◽  
pp. 2027-2035 ◽  
Author(s):  
N. Maus ◽  
N. Stuurman ◽  
P.A. Fisher

Stage 14 Drosophila oocytes are arrested in first meiotic metaphase. A cell-free extract of these oocytes catalyzes apparent disassembly of purified Drosophila nuclei as well as of nuclear lamin polymers formed in vitro from isolated interphase lamins. Biochemically, the oocyte extract catalyzes lamin solubilization and phosphorylation as well as characteristic changes in one- and two-dimensional gel mobility. A previously unidentified soluble lamin isoform is easily seen after in vitro disassembly. This isoform is detectable but present only in very small quantities in vivo and is apparently derived specifically from one of the two interphase lamin isoforms. Cell-free nuclear lamina disassembly is ATP-dependent and addition of calcium to extracts blocks disassembly as judged both morphologically and biochemically. This system will allow enzymological characterization of cell-free lamina disassembly as well as molecular analysis of specific Drosophila mutants.


2018 ◽  
Vol 115 (40) ◽  
pp. 10100-10105 ◽  
Author(s):  
Natalie Y. Chen ◽  
Paul Kim ◽  
Thomas A. Weston ◽  
Lovelyn Edillo ◽  
Yiping Tu ◽  
...  

The nuclear lamina, an intermediate filament meshwork lining the inner nuclear membrane, is formed by the nuclear lamins (lamins A, C, B1, and B2). Defects or deficiencies in individual nuclear lamin proteins have been reported to elicit nuclear blebs (protrusions or outpouchings of the nuclear envelope) and increase susceptibility for nuclear membrane ruptures. It is unclear, however, how a complete absence of nuclear lamins would affect nuclear envelope morphology and nuclear membrane integrity (i.e., whether nuclear membrane blebs or protrusions would occur and, if not, whether cells would be susceptible to nuclear membrane ruptures). To address these issues, we generated mouse embryonic fibroblasts (MEFs) lacking all nuclear lamins. The nuclear lamin-deficient MEFs had irregular nuclear shapes but no nuclear blebs or protrusions. Despite a virtual absence of nuclear blebs, MEFs lacking nuclear lamins had frequent, prolonged, and occasionally nonhealing nuclear membrane ruptures. By transmission electron microscopy, the inner nuclear membrane in nuclear lamin-deficient MEFs have a “wavy” appearance, and there were discrete discontinuities in the inner and outer nuclear membranes. Nuclear membrane ruptures were accompanied by a large increase in DNA damage, as judged by γ-H2AX foci. Mechanical stress increased both nuclear membrane ruptures and DNA damage, whereas minimizing transmission of cytoskeletal forces to the nucleus had the opposite effects.


2001 ◽  
Vol 154 (1) ◽  
pp. 61-70 ◽  
Author(s):  
Reynold I. Lopez-Soler ◽  
Robert D. Moir ◽  
Timothy P. Spann ◽  
Reimer Stick ◽  
Robert D. Goldman

The molecular interactions responsible for nuclear envelope assembly after mitosis are not well understood. In this study, we demonstrate that a peptide consisting of the COOH-terminal domain of Xenopus lamin B3 (LB3T) prevents nuclear envelope assembly in Xenopus interphase extracts. Specifically, LB3T inhibits chromatin decondensation and blocks the formation of both the nuclear lamina–pore complex and nuclear membranes. Under these conditions, some vesicles bind to the peripheral regions of the chromatin. These “nonfusogenic” vesicles lack lamin B3 (LB3) and do not bind LB3T; however, “fusogenic” vesicles containing LB3 can bind LB3T, which blocks their association with chromatin and, subsequently, nuclear membrane assembly. LB3T also binds to chromatin in the absence of interphase extract, but only in the presence of purified LB3. Additionally, we show that LB3T inhibits normal lamin polymerization in vitro. These findings suggest that lamin polymerization is required for both chromatin decondensation and the binding of nuclear membrane precursors during the early stages of normal nuclear envelope assembly.


Parasitology ◽  
1996 ◽  
Vol 112 (1) ◽  
pp. 89-95 ◽  
Author(s):  
R. C. Ko ◽  
L. Fan

SUMMARYHeat shock proteins (HSPs) were documented for the first time in both somatic extracts and excretory/secretory (ES) products of the infective-stage larvae of Trichinella spiralis and T. pseudospiralis. Larvae recovered from muscles of infected mice were heat shocked at 37, 40, 43 and 45 °C in RPMI 1640 medium containing L-[35S]methionine. Somatic extracts and ES products of heat-shocked worms were then analysed by SDS-PAGE, autoradiography and laser densitometry. Prominent bands of HSPs were observed at 43 °C which is the optimal heat shock temperature. The major HSPs in somatic extracts of T. spiralis were 20, 47, 50, 70, 80 and 86 kDa. When the temperature was increased from 37 to 43 °C, the greatest increase in absorbance was observed in HSPs 70 and 86. In vitro translation of mRNA in a nuclease-treated rabbit reticulocyte lysate system showed an increase in the synthesis of the 80 kDa protein. This suggests that the production of HSP 80 is regulated at the transcriptional level. The major HSPs in the ES products were 11, 45, 53 and 64 kDa. In T. pseudospiralis, the major HSPs in the somatic extracts were 20, 26, 31, 50, 53, 70, 80 and 86 kDa, and in the ES products, 11, 35, 37, 41 and 64 kDa.


Sign in / Sign up

Export Citation Format

Share Document