scholarly journals Three differentially expressed Na,K-ATPase alpha subunit isoforms: structural and functional implications.

1987 ◽  
Vol 105 (4) ◽  
pp. 1855-1865 ◽  
Author(s):  
V L Herrera ◽  
J R Emanuel ◽  
N Ruiz-Opazo ◽  
R Levenson ◽  
B Nadal-Ginard

We have characterized cDNAs coding for three Na,K-ATPase alpha subunit isoforms from the rat, a species resistant to ouabain. Northern blot and S1-nuclease mapping analyses revealed that these alpha subunit mRNAs are expressed in a tissue-specific and developmentally regulated fashion. The mRNA for the alpha 1 isoform, approximately equal to 4.5 kb long, is expressed in all fetal and adult rat tissues examined. The alpha 2 mRNA, also approximately equal to 4.5 kb long, is expressed predominantly in brain and fetal heart. The alpha 3 cDNA detected two mRNA species: a approximately equal to 4.5 kb mRNA present in most tissues and a approximately equal to 6 kb mRNA, found only in fetal brain, adult brain, heart, and skeletal muscle. The deduced amino acid sequences of these isoforms are highly conserved. However, significant differences in codon usage and patterns of genomic DNA hybridization indicate that the alpha subunits are encoded by a multigene family. Structural analysis of the alpha subunits from rat and other species predicts a polytopic protein with seven membrane-spanning regions. Isoform diversity of the alpha subunit may provide a biochemical basis for Na,K-ATPase functional diversity.


1987 ◽  
Vol 7 (5) ◽  
pp. 1873-1880
Author(s):  
H Nojima ◽  
K Kishi ◽  
H Sokabe

We have observed three calmodulin mRNA species in rat tissues. In order to know from how many expressed genes they are derived, we have investigated the genomic organization of calmodulin genes in the rat genome. From a rat brain cDNA library, we obtained two kinds of cDNAs (pRCM1 and pRCM3) encoding authentic calmodulin. DNA sequence analysis of these cDNA clones revealed substitutions of nucleotides at 73 positions of 450 nucleotides in the coding region, although the amino acid sequences of these calmodulins are exactly the same. DNA sequences in the 5' and 3' noncoding regions are quite different between these two cDNAs. From these results, we conclude that they are derived from two distinct bona fide calmodulin genes, CaMI (pRCM1) and CaMII (pRCM3). Total genomic Southern hybridization suggested four distinct calmodulin-related genes in the rat genome. By cloning and sequencing the calmodulin-related genes from rat genomic libraries, we demonstrated that the other two genes are processed pseudogenes generated from the CaMI (lambda SC9) and CaMII (lambda SC8) genes, respectively, through an mRNA-mediated process of insertions. Northern blotting showed that the CaMI gene is transcribed in liver, muscle, and brain in similar amounts, whereas the CaMII gene is transcribed mainly in brain. S1 nuclease mapping indicated that the CaMI gene produced two mRNA species (1.7 and 4 kilobases), whereas the CaMII gene expressed a single mRNA species (1.4 kilobases).



1994 ◽  
Vol 266 (3) ◽  
pp. C579-C589 ◽  
Author(s):  
D. M. Fambrough ◽  
M. V. Lemas ◽  
M. Hamrick ◽  
M. Emerick ◽  
K. J. Renaud ◽  
...  

The Na-K-ATPase, or sodium pump, is comprised of two subunits, alpha and beta. Each subunit spans the lipid bilayer of the cell membrane. This review summarizes our efforts to determine how the two subunits interact to form the functional ion transporter. Our major approach has been to observe the potential for subunit assembly when one or both subunits are truncated or present as chimeras that retain only a limited region of the Na-K-ATPase. DNAs encoding these altered subunit forms of the avian Na-K-ATPase are expressed in mammalian cells. Monoclonal antibodies specific for the avian beta-subunit are then used to purify newly synthesized avian beta-subunits, and the presence of accompanying alpha-subunits indicates that subunit assembly has occurred. The ectodomain of the beta-subunit (approximately residues 62-304) is sufficient for assembly with the alpha-subunit, and a COOH-terminal truncation of the beta-subunit that lacks aminoacyl residues beyond 162 will assemble inefficiently. A maximum of 26 aminoacyl residues of the alpha-subunit are necessary for robust assembly with the beta-subunit, when this sequence replaces the COOH-terminal half of the loop between membrane spans 7 and 8 in the SERCA1 Ca-ATPase. This region of the Ca-ATPase faces the lumen of the endoplasmic reticulum. These findings encourage study of other related questions, including whether there is preferential assembly of certain subunit isoforms and how various P-type ATPases are targeted to their appropriate subcellular compartments.



1992 ◽  
Vol 286 (1) ◽  
pp. 131-134 ◽  
Author(s):  
E Ruffet ◽  
N Paquet ◽  
S Frutiger ◽  
G J Hughes ◽  
J C Jaton

The 133-amino-acid sequences of the alpha-subunit of jacalin (a lectin from Artocarpus integrifolia) and of the slightly larger alpha'-subunit were determined. The alpha'- and alpha-subunits, in the approximate ratio of 1:3, were found to be virtually identical in their primary structures, except for one valine for isoleucine substitution at position 113. Although both alpha'- and alpha-chains were glycosylated, the extent of glycosylation in the alpha'-chain was much greater than that in the alpha-subunit. In the alpha'-polypeptide, all molecules contained an N-linked oligosaccharide at position 74 and some contained sugar at position 43. The alpha- and alpha'-subunits were found to be strongly non-covalently associated with three distinct beta-subunits containing 20 amino acids each. Electron-microscopic visualization of native jacalin disclosed a structure composed of four alpha-type subunits with a clear-cut 4-fold symmetry. Analytical-ultracentrifugation studies of jacalin revealed an average molecular mass of 65 kDa, a value compatible with a tetrameric structure of the alpha(alpha')-subunits. The recalculated number of sugar-binding sites per jacalin molecule, given a molecular mass of 65 kDa, would yield 0.8 sites per alpha(alpha')-promoter, i.e. about twice the value previously determined [Appukutan & Basu (1985) FEBS Lett. 180, 331-334; Ahmed & Chatterjee (1989) J. Biol. Chem. 264, 9365-9372].



1990 ◽  
Vol 259 (4) ◽  
pp. C619-C630 ◽  
Author(s):  
K. Takeyasu ◽  
V. Lemas ◽  
D. M. Fambrough

Encoding DNA for alpha 2- and alpha 3-isoforms of the alpha-subunit of the chicken Na(+)-K(+)-ATPase have been cloned, and their nucleotide sequences and deduced amino acid sequences are reported. Comparisons between these data and comparable data for the rat alpha-subunit isoforms make possible an assessment of alpha-subunit isoform diversity among vertebrates. There is approximately twice as much amino acid sequence difference between alpha-isoforms within a single species as there is difference between corresponding alpha-isoforms of bird and mammal. These data are consistent with triplication of the alpha-subunit gene and evolution of substantially different alpha-subunit isoforms before the separation of avian and mammalian lineages over 200 million years ago and then retention of the majority of these structural differences through subsequent evolution. The implications of this conversation of isoform-specific structural features are discussed in terms of transport functions and bioregulation of the Na(+)-K(+)-ATPase.



1991 ◽  
Vol 2 (2) ◽  
pp. 135-154 ◽  
Author(s):  
M A Lochrie ◽  
J E Mendel ◽  
P W Sternberg ◽  
M I Simon

A cDNA corresponding to a known G protein alpha subunit, the alpha subunit of Go (Go alpha), was isolated and sequenced. The predicted amino acid sequence of C. elegans Go alpha is 80-87% identical to other Go alpha sequences. An mRNA that hybridizes to the C. elegans Go alpha cDNA can be detected on Northern blots. A C. elegans protein that crossreacts with antibovine Go alpha antibody can be detected on immunoblots. A cosmid clone containing the C. elegans Go alpha gene (goa-1) was isolated and mapped to chromosome I. The genomic fragments of three other C. elegans G protein alpha subunit genes (gpa-1, gpa-2, and gpa-3) have been isolated using the polymerase chain reaction. The corresponding cosmid clones were isolated and mapped to disperse locations on chromosome V. The sequences of two of the genes, gpa-1 and gpa-3, were determined. The predicted amino acid sequences of gpa-1 and gpa-3 are only 48% identical to each other. Therefore, they are likely to have distinct functions. In addition they are not homologous enough to G protein alpha subunits in other organisms to be classified. Thus C. elegans has G proteins that are identifiable homologues of mammalian G proteins as well as G proteins that appear to be unique to C. elegans. Study of identifiable G proteins in C. elegans may result in a further understanding of their function in other organisms, whereas study of the novel G proteins may provide an understanding of unique aspects of nematode physiology.



1987 ◽  
Vol 7 (5) ◽  
pp. 1873-1880 ◽  
Author(s):  
H Nojima ◽  
K Kishi ◽  
H Sokabe

We have observed three calmodulin mRNA species in rat tissues. In order to know from how many expressed genes they are derived, we have investigated the genomic organization of calmodulin genes in the rat genome. From a rat brain cDNA library, we obtained two kinds of cDNAs (pRCM1 and pRCM3) encoding authentic calmodulin. DNA sequence analysis of these cDNA clones revealed substitutions of nucleotides at 73 positions of 450 nucleotides in the coding region, although the amino acid sequences of these calmodulins are exactly the same. DNA sequences in the 5' and 3' noncoding regions are quite different between these two cDNAs. From these results, we conclude that they are derived from two distinct bona fide calmodulin genes, CaMI (pRCM1) and CaMII (pRCM3). Total genomic Southern hybridization suggested four distinct calmodulin-related genes in the rat genome. By cloning and sequencing the calmodulin-related genes from rat genomic libraries, we demonstrated that the other two genes are processed pseudogenes generated from the CaMI (lambda SC9) and CaMII (lambda SC8) genes, respectively, through an mRNA-mediated process of insertions. Northern blotting showed that the CaMI gene is transcribed in liver, muscle, and brain in similar amounts, whereas the CaMII gene is transcribed mainly in brain. S1 nuclease mapping indicated that the CaMI gene produced two mRNA species (1.7 and 4 kilobases), whereas the CaMII gene expressed a single mRNA species (1.4 kilobases).



2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Liam M. Koehn ◽  
Katarzyna M. Dziegielewska ◽  
Mark D. Habgood ◽  
Yifan Huang ◽  
Norman R. Saunders

Abstract Background Adenosine triphosphate binding cassette transporters such as P-glycoprotein (PGP) play an important role in drug pharmacokinetics by actively effluxing their substrates at barrier interfaces, including the blood-brain, blood-cerebrospinal fluid (CSF) and placental barriers. For a molecule to access the brain during fetal stages it must bypass efflux transporters at both the placental barrier and brain barriers themselves. Following birth, placental protection is no longer present and brain barriers remain the major line of defense. Understanding developmental differences that exist in the transfer of PGP substrates into the brain is important for ensuring that medication regimes are safe and appropriate for all patients. Methods In the present study PGP substrate rhodamine-123 (R123) was injected intraperitoneally into E19 dams, postnatal (P4, P14) and adult rats. Naturally fluorescent properties of R123 were utilized to measure its concentration in blood-plasma, CSF and brain by spectrofluorimetry (Clariostar). Statistical differences in R123 transfer (concentration ratios between tissue and plasma ratios) were determined using Kruskal-Wallis tests with Dunn’s corrections. Results Following maternal injection the transfer of R123 across the E19 placenta from maternal blood to fetal blood was around 20 %. Of the R123 that reached fetal circulation 43 % transferred into brain and 38 % into CSF. The transfer of R123 from blood to brain and CSF was lower in postnatal pups and decreased with age (brain: 43 % at P4, 22 % at P14 and 9 % in adults; CSF: 8 % at P4, 8 % at P14 and 1 % in adults). Transfer from maternal blood across placental and brain barriers into fetal brain was approximately 9 %, similar to the transfer across adult blood-brain barriers (also 9 %). Following birth when placental protection was no longer present, transfer of R123 from blood into the newborn brain was significantly higher than into adult brain (3 fold, p < 0.05). Conclusions Administration of a PGP substrate to infant rats resulted in a higher transfer into the brain than equivalent doses at later stages of life or equivalent maternal doses during gestation. Toxicological testing of PGP substrate drugs should consider the possibility of these patient specific differences in safety analysis.



1995 ◽  
Vol 307 (1) ◽  
pp. 257-265 ◽  
Author(s):  
K Nasu ◽  
T Ishida ◽  
M Setoguchi ◽  
Y Higuchi ◽  
S Akizuki ◽  
...  

Recombinant wild-type rabbit osteopontin (rOP) and the protein with an aspartate-to-glutamate transposition induced by a point mutation in the rabbit OP cDNA within the Gly-Arg-Gly-Asp-Ser (GRGDS) sequence were expressed in Escherichia coli and purified to homogeneity. P388D1 cells bound rOP in a saturable manner. rOP induced adhesion and haptotaxis of P388D1 cells, whereas mutated rabbit OP (rOPmut) did not. Anti-rOP IgG F(ab′)2 and synthetic GRGDS peptide inhibited rOP-mediated adhesion and haptotaxis of P388D1 cells. Fibronectin (FN)-mediated adhesion of P388D1 cells was markedly inhibited in the presence of fluid-phase rOP. Adhesion of P388D1 cells to rOP was significantly inhibited by anti-[alpha-subunits of VLA4 (alpha 4) and VLA5 (alpha 5)] monoclonal antibodies (mAbs), but not by anti-[alpha-subunit of vitronectin (VN) receptor (alpha V) or Mac-1 (alpha M)] mAb. Adhesion of P388D1 cells to FN and VN was significantly inhibited by anti-alpha V mAb but not anti-alpha 4, -alpha 5 or -alpha M mAb. Haptotaxis of P388D1 cells to rOP was significantly inhibited by anti-alpha V mAb, but not by anti-alpha 4, -alpha 5 and alpha M mAbs, whereas that to FN showed no inhibition with all three mAbs. Haptotaxis of P388D1 cells to VN was significantly inhibited by anti-alpha 5 and -alpha V mAbs but not by anti-alpha 4 and -alpha M mAbs. Similar features of inhibition of adhesion and haptotaxis of P388D1 cells to human OP were observed by mAbs. rOP had no chemotactic effect on P388D1 cells. Significant polymorphonuclear leucocyte migration was observed 3-12 h after intradermal injection of rOP into rabbits.



1980 ◽  
Vol 192 (2) ◽  
pp. 469-481 ◽  
Author(s):  
W A Hughes ◽  
R W Brownsey ◽  
R M Denton

1. Intact rat epididymal fat-cells were incubated with 32Pi, and the intracellular proteins were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. One of the separated bands of phosphorylated proteins had an apparent subunit mol.wt. of 42 000, which is the same as that of the alpha-subunit of the pyruvate dehydrogenase complex. By using a combination of subcellular fractionation, immunoprecipitation with antiserum raised against pyruvate dehydrogenase complex and two-dimensional electrophoresis it was apparent that the incorporation into alpha-subunits accounted for 35–45% of the total incorporation into this band of phosphoproteins. 2. The increase in the initial activity of pyruvate dehydrogenase that follows brief exposure of fat-cells to insulin was shown to be associated with a decrease in the steady-state incorporation of 32P into the alpha-subunits of pyruvate dehydrogenase. 3. Tryptic peptide analysis of pyruvate dehydrogenase [32P]phosphate, labelled in intact fat-cells, indicated that three serine residues on the alpha-subunit were phosphorylated, corresponding to the three sites phosphorylated when purified pig heart pyruvate dehydrogenase was incubated with [gamma-32P]ATP. The relative phosphorylation of all three serine residues appeared to be similar in 32P-labelled alpha-subunits in both control and insulin-treated fat-cells.



Sign in / Sign up

Export Citation Format

Share Document