scholarly journals Multiple genes are required for proper insertion of secretory proteins into the endoplasmic reticulum in yeast.

1989 ◽  
Vol 109 (6) ◽  
pp. 2641-2652 ◽  
Author(s):  
J A Rothblatt ◽  
R J Deshaies ◽  
S L Sanders ◽  
G Daum ◽  
R Schekman

Genes that function in translocation of secretory protein precursors into the ER have been identified by a genetic selection for mutant yeast cells that fail to translocate a signal peptide-cytosolic enzyme hybrid protein. The new mutants, sec62 and sec63, are thermosensitive for growth and accumulate a variety of soluble secretory and vacuolar precursors whose electrophoretic mobilities coincide with those of the corresponding in vitro translated polypeptides. Proteolytic sensitivity of precursor molecules in extracts of mutant cells confirms that polypeptide translocation is blocked. Some form of interaction among the SEC61 (Deshaies, R. J., and R. Schekman. 1987. J. Cell Biol. 105:633-645), SEC62 and SEC63 gene products is suggested by the observation that haploid cells containing any pair of the mutations are inviable at 24 degrees C and show a marked enhancement of the translocation defect. The translocation defects of two mutants (sec62 and sec63) have been reproduced in vitro. sec63 microsomes display low and thermolabile translocation activity for prepro-alpha-factor (pp alpha F) synthesized with a cytosol fraction from wild type yeast. These gene products may constitute part of the polypeptide recognition or translocation apparatus of the ER membrane. Pulse-chase analysis of the translocation-defective mutants demonstrates that insertion of pp alpha F into the ER can proceed posttranslationally.

Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 69-80 ◽  
Author(s):  
James A Fleming ◽  
Leticia R Vega ◽  
Frank Solomon

Abstract Overexpression of the β-tubulin binding protein Rbl2p/cofactor A is lethal in yeast cells expressing a mutant α-tubulin, tub1-724, that produces unstable heterodimer. Here we use RBL2 overexpression to identify mutations in other genes that affect formation or stability of heterodimer. This approach identifies four genes—CIN1, CIN2, CIN4, and PAC2—as affecting heterodimer formation in vivo. The vertebrate homologues of two of these gene products—Cin1p/cofactor D and Pac2p/cofactor E—can catalyze exchange of tubulin polypeptides into preexisting heterodimer in vitro. Previous work suggests that both Cin2p or Cin4p act in concert with Cin1p in yeast, but no role for vertebrate homologues of either has been reported in the in vitro reaction. Results presented here demonstrate that these proteins can promote heterodimer formation in vivo. RBL2 overexpression in cin1 and pac2 mutant cells causes microtubule disassembly and enhanced formation of Rbl2p-β-tubulin complex, as it does in the α-tubulin mutant that produces weakened heterodimer. Significantly, excess Cin1p/cofactor D suppresses the conditional phenotypes of that mutant α-tubulin. Although none of the four genes is essential for viability under normal conditions, they become essential under conditions where the levels of dissociated tubulin polypeptides increase. Therefore, these proteins may provide a salvage pathway for dissociated tubulin heterodimers and so rescue cells from the deleterious effects of free β-tubulin.


1987 ◽  
Vol 105 (2) ◽  
pp. 633-645 ◽  
Author(s):  
R J Deshaies ◽  
R Schekman

We have devised a genetic selection for mutant yeast cells that fail to translocate secretory protein precursors into the lumen of the endoplasmic reticulum (ER). Mutant cells are selected by a procedure that requires a signal peptide-containing cytoplasmic enzyme chimera to remain in contact with the cytosol. This approach has uncovered a new secretory mutant, sec61, that is thermosensitive for growth and that accumulates multiple secretory and vacuolar precursor proteins that have not acquired any detectable posttranslational modifications associated with translocation into the ER. Preproteins that accumulate at the sec61 block sediment with the particulate fraction, but are exposed to the cytosol as judged by sensitivity to proteinase K. Thus, the sec61 mutation defines a gene that is required for an early cytoplasmic or ER membrane-associated step in protein translocation.


1995 ◽  
Vol 15 (11) ◽  
pp. 6311-6321 ◽  
Author(s):  
D J DeMarini ◽  
F R Papa ◽  
S Swaminathan ◽  
D Ursic ◽  
T P Rasmussen ◽  
...  

The yeast Sen1 protein was discovered by virtue of its role in tRNA splicing in vitro. To help determine the role of Sen1 in vivo, we attempted to overexpress the protein in yeast cells. However, cells with a high-copy SEN1-bearing plasmid, although expressing elevated amounts of SEN1 mRNA, show little increase in the level of the encoded protein, indicating that a posttranscriptional mechanism limits SEN1 expression. This control depends on an amino-terminal element of Sen1. Using a genetic selection for mutants with increased expression of Sen1-derived fusion proteins, we identified mutations in a novel gene, designated SEN3. SEN3 is essential and encodes a 945-residue protein with sequence similarity to a subunit of an activator of the 20S proteasome from bovine erythrocytes, called PA700. Earlier work indicated that the 20S proteasome associates with a multisubunit regulatory factor, resulting in a 26S proteasome complex that degrades substrates of the ubiquitin system. Mutant sen3-1 cells have severe defects in the degradation of such substrates and accumulate ubiquitin-protein conjugates. Most importantly, we show biochemically that Sen3 is a subunit of the 26S proteasome. These data provide evidence for the involvement of the 26S proteasome in the degradation of ubiquitinated proteins in vivo and for a close relationship between PA700 and the regulatory complexes within the 26S proteasome, and they directly demonstrate that Sen3 is a component of the yeast 26S proteasome.


1988 ◽  
Vol 8 (10) ◽  
pp. 4098-4109 ◽  
Author(s):  
K A Eakle ◽  
M Bernstein ◽  
S D Emr

SEC18 gene function is required for secretory protein transport between the endoplasmic reticulum (ER) and the Golgi complex. We cloned the SEC18 gene by complementation of the sec18-1 mutation. Gene disruption has shown that SEC18 is essential for yeast cell growth. Sequence analysis of the gene revealed a 2,271-base-pair open reading frame which could code for a protein of 83.9 kilodaltons. The predicted protein sequence showed no significant similarity to other known protein sequences. In vitro transcription and translation of SEC18 led to the synthesis of two proteins of approximately 84 and 82 kilodaltons. Antisera raised against a Sec18-beta-galactosidase fusion protein also detected two proteins (collectively referred to as Sec18p) in extracts of 35S-labeled yeast cells identical in size to those seen by in vitro translation. Mapping of the 5' end of the SEC18 mRNA revealed only one major start site for transcription, which indicates that the multiple forms of Sec18p do not arise from mRNAs with different 5' ends. Results of pulse-chase experiments indicated that the two forms of Sec18p are not the result of posttranslational processing. We suggest that translation initiating at different in-frame AUG start codons is likely to account for the presence of two forms of Sec18p. Hydrophobicity analysis indicated that the proteins were hydrophilic in nature and lacked any region that would be predicted to serve as a signal sequence or transmembrane anchor. Although potential sites for N-linked glycosylation were present in the Sec18p sequence, the sizes of the in vivo SEC18 gene products were unaffected by the drug tunicamycin, indicating that Sec18p does not enter the secretory pathway. These results suggest that Sec18p resides in the cell cytoplasm. While preliminary cell fractionation studies showed that Sec18p is not associated with the ER or Golgi complex, association with a 100,000 x g pellet fraction was observed. This suggests that Sec18p may bind transiently to small vesicles such as those presumed to participate in secretory protein transport between ER and the Golgi complex.


1989 ◽  
Vol 9 (3) ◽  
pp. 1191-1199
Author(s):  
M Bernstein ◽  
F Kepes ◽  
R Schekman

When incubated at a restrictive temperature, Saccharomyces cerevisiae sec59 mutant cells accumulate inactive and incompletely glycosylated forms of secretory proteins. Three different secretory polypeptides (invertase, pro-alpha-factor, and pro-carboxypeptidase Y) accumulated within a membrane-bounded organelle, presumably the endoplasmic reticulum, and resisted proteolytic degradation unless the membrane was permeabilized with detergent. Molecular cloning and DNA sequence analysis of the SEC59 gene predicted an extremely hydrophobic protein product of 59 kilodaltons. This prediction was confirmed by reconstitution of the sec59 defect in vitro. The alpha-factor precursor, which was translated in a soluble fraction from wild-type cells, was translocated into, but inefficiently glycosylated within, membranes from sec59 mutant cells. Residual glycosylation activity of membranes of sec59 cells was thermolabile compared with the activity of wild-type membranes. Partial restoration of glycosylation was obtained in reactions that were supplemented with mannose or GDP-mannose, but not those supplemented with other sugar nucleotides. These results were consistent with a role for the Sec59 protein in the transfer of mannose to dolichol-linked oligosaccharide.


2019 ◽  
Vol 39 (2) ◽  
Author(s):  
Jie Sheng ◽  
Nick K. Olrichs ◽  
Willie J. Geerts ◽  
Xueyi Li ◽  
Ashfaq Ur Rehman ◽  
...  

Abstract Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-related 1 proteins) are characterized by the presence of a CAP domain that is defined by four sequence motifs and a highly conserved tertiary structure. A common structure–function relationship for this domain is hitherto unknown. A characteristic of several CAP proteins is their formation of amyloid-like structures in the presence of lipids. Here we investigate the structural modulation of Golgi-Associated plant Pathogenesis Related protein 1 (GAPR-1) by known interactors of the CAP domain, preceding amyloid-like aggregation. Using isothermal titration calorimetry (ITC), we demonstrate that GAPR-1 binds zinc ions. Zn2+ binding causes a slight but significant conformational change as revealed by CD, tryptophan fluorescence, and trypsin digestion. The Zn2+-induced conformational change was required for the formation of GAPR-1 oligomers and amyloid-like assemblies in the presence of heparin, as shown by ThT fluorescence and TEM. Molecular dynamics simulations show binding of Zn2+ to His54 and His103. Mutation of these two highly conserved residues resulted in strongly diminished amyloid-like aggregation. Finally, we show that proteins from the cysteine-rich secretory protein (CRISP) subfamily are also able to form ThT-positive structures in vitro in a heparin- and Zn2+-dependent manner, suggesting that oligomerization regulated by metal ions could be a common structural property of the CAP domain.


2002 ◽  
Vol 368 (2) ◽  
pp. 605-610 ◽  
Author(s):  
Renu K. JAIN ◽  
Wen Tzu CHANG ◽  
Chitta GEETHA ◽  
Paul B.M. JOYCE ◽  
Sven-Ulrik GORR

Aggregation chaperones, consisting of secretory proteins that contain a hexa-histidine epitope tag, enhance the calcium-induced aggregation of regulated secretory proteins and their sorting to secretory granules. The goal of this study was to gain a better understanding of this unusual aggregation mechanism. Hexa-histidine-epitope-tagged secreted alkaline phosphatase, an aggregation chaperone, enhanced the in vitro aggregation of chromogranin A in the presence of calcium, but not in the presence of magnesium or other divalent cations. As an exception, chromogranin was completely aggregated by zinc, even in the absence of the aggregation chaperone. In addition, fluorescence spectroscopy of the aggregation reaction mixture showed an increase in fluorescence intensity consistent with the formation of protein aggregates. The calcium-induced aggregation of chromogranin A was completely inhibited by 0.2% Triton X-100, suggesting that it involves hydrophobic interactions. In contrast, the detergent did not affect chaperone-enhanced aggregation, suggesting that this aggregation does not depend on hydrophobic interactions. EDTA-treated chaperone did not enhance chromogranin A aggregation, indicating that divalent cations are necessary for chaperone action. Although the structure of the aggregation chaperone was not important, the size of the chaperone was. Thus the free His-hexapeptide could not substitute for the aggregation chaperone. Based on these results, we propose that the hexa-histidine tag, in the context of a polypeptide, acts as a divalent cation-dependent nucleation site for chromogranin A aggregation.


1991 ◽  
Vol 112 (3) ◽  
pp. 365-376 ◽  
Author(s):  
P Arvan ◽  
J Lee

We have studied concurrent apical/basolateral and regulated/constitutive secretory targeting in filter-grown thyroid epithelial monolayers in vitro, by following the exocytotic routes of two newly synthesized endogenous secretory proteins, thyroglobulin (Tg) and p500. Tg is a regulated secretory protein as indicated by its acute secretory response to secretagogues. Without stimulation, pulse-labeled Tg exhibits primarily two kinetically distinct routes: less than or equal to 80% is released in an apical secretory phase which is largely complete by 6-10 h, with most of the remaining Tg retained in intracellular storage from which delayed apical discharge is seen. The rapid export observed for most Tg is unlikely to be because of default secretion, since its apical polarity is preserved even during the period (less than or equal to 10 h) when p500 is released basolaterally by a constitutive pathway unresponsive to secretagogues. p500 also exhibits a second, kinetically distinct secretory route: at chase times greater than 10 h, a residual fraction (less than or equal to 8%) of p500 is secreted with an apical preponderance similar to that of Tg. It appears that this fraction of p500 has failed to be excluded from the regulated pathway, which has a predetermined apical polarity. From these data we hypothesize that a targeting hierarchy may exist in thyroid epithelial cells such that initial sorting to the regulated pathway may be a way of insuring apical surface delivery from one of two possible exocytotic routes originating in the immature storage compartment.


1989 ◽  
Vol 9 (3) ◽  
pp. 1191-1199 ◽  
Author(s):  
M Bernstein ◽  
F Kepes ◽  
R Schekman

When incubated at a restrictive temperature, Saccharomyces cerevisiae sec59 mutant cells accumulate inactive and incompletely glycosylated forms of secretory proteins. Three different secretory polypeptides (invertase, pro-alpha-factor, and pro-carboxypeptidase Y) accumulated within a membrane-bounded organelle, presumably the endoplasmic reticulum, and resisted proteolytic degradation unless the membrane was permeabilized with detergent. Molecular cloning and DNA sequence analysis of the SEC59 gene predicted an extremely hydrophobic protein product of 59 kilodaltons. This prediction was confirmed by reconstitution of the sec59 defect in vitro. The alpha-factor precursor, which was translated in a soluble fraction from wild-type cells, was translocated into, but inefficiently glycosylated within, membranes from sec59 mutant cells. Residual glycosylation activity of membranes of sec59 cells was thermolabile compared with the activity of wild-type membranes. Partial restoration of glycosylation was obtained in reactions that were supplemented with mannose or GDP-mannose, but not those supplemented with other sugar nucleotides. These results were consistent with a role for the Sec59 protein in the transfer of mannose to dolichol-linked oligosaccharide.


1994 ◽  
Vol 124 (6) ◽  
pp. 893-902 ◽  
Author(s):  
MC Gautier ◽  
N Garreau de Loubresse ◽  
L Madeddu ◽  
L Sperling

The ciliated protozoan Paramecium has a regulated secretory system amenable to genetic analysis. The secretory storage granules, known as trichocysts, enclose a crystalline matrix with a genetically determined shape whose biogenesis involves proteolytic maturation of a family of precursor molecules into a heterogeneous set of small acidic polypeptides that crystallize within the maturing vesicles. We have developed an original pulse-chase protocol for monoxenic Paramecium cultures using radiolabeled bacteria to study the processing of trichocyst matrix proteins in wild-type and mutant cells. In wild-type cells, proteolytic processing is blocked in the presence of monensin and otherwise rapidly completed after approximately 20 min of chase, suggesting that the conversion occurs in the trans-Golgi and/or in small vesicles soon after sorting to the regulated pathway, probably before crystallization begins. In trichless mutant cells, which contain no visible trichocysts, secretory proteins are synthesized but not processed and we report constitutive secretion of the uncleaved precursor molecules. The mutation thus appears to affect sorting to the regulated pathway and should prove useful for analysis of the sorting machinery and of the relationship between sorting and proteolytic processing of secretory proteins. In mutants bearing misshapen trichocysts with poorly crystallized contents (tam33, tam38, stubbyA), the proteolytic processing of the trichocyst matrix proteins appears to be normal, while both pulse-chase and morphological data indicate that intracellular transport is perturbed, probably between ER and Golgi. Precursor molecules are present in the mutant trichocysts but not in wild-type trichocysts and may account for the defective crystallization. Our analysis of these mutants suggests that the temporal coordination of intracellular traffic plays a regulatory role in granule maturation.


Sign in / Sign up

Export Citation Format

Share Document