scholarly journals Polarized expression of integrin receptors (alpha 6 beta 4, alpha 2 beta 1, alpha 3 beta 1, and alpha v beta 5) and their relationship with the cytoskeleton and basement membrane matrix in cultured human keratinocytes.

1991 ◽  
Vol 112 (4) ◽  
pp. 761-773 ◽  
Author(s):  
P C Marchisio ◽  
S Bondanza ◽  
O Cremona ◽  
R Cancedda ◽  
M De Luca

In human keratinocytes cultured in conditions which allow differentiation and stratification and are suitable to reconstitute a fully functional epidermis, alpha 6 beta 4 and two members of the beta 1 integrin family (alpha 2 beta 1 and alpha 3 beta 1) were respectively polarized to the basal and lateral domains of the plasmamembrane both in growing colonies and in the reconstituted epidermis. Conversely, the alpha v integrin subunit, presumably in association with beta 5, was expressed at the basal surface in growing and migrating but not in stationary keratinocytes. The integrin alpha 6 beta 4: (a) was organized in typical patches which often showed a "leopard skin" pattern where spots corresponded to microfilament-free areas; (b) was not associated with focal contacts containing vinculin and talin but rather corresponded to relatively removed contact areas of the basal membrane as shown by interference reflection microscopy; and (c) was coherent to patches of laminin secreted and deposited underneath the ventral membrane of individual cells. The two beta 1 integrins (alpha 2 beta 1 and alpha 3 beta 1), both endowed with laminin receptor properties, were not associated with focal adhesions under experimental conditions allowing full epidermal maturation but matched the lateral position of vinculin (but not talin), cingulin, and desmoplakin, all makers of intercellular junctions. Often thin strips of laminin were observed in between the lateral aspects of individual basal keratinocytes. The integrin complex alpha v beta 5 had a topography similar to that of talin- and vinculin-containing focal adhesions mostly in the peripheral cells of expanding keratinocyte colonies and in coincidence with fibronectin strands. The discrete topography of beta 1 and beta 4 integrins has a functional role in the maintenance of the state of aggregation of cultured keratinocytes since lateral aggregation was impaired by antibodies to beta 1 whereas antibodies to beta 4 prevented cell-matrix adhesion (De Luca, M., R. N. Tamura, S. Kajiji, S. Bondanza, P. Rossino, R. Cancedda, P. C. Marchisio, and V. Quaranta. Proc. Natl. Acad. Sci. USA. 87:6888-6892). Moreover, the surface polarization of integrins followed attachment and depended both on the presence of Ca2+ in the medium and on the integrity of the cytoskeleton. We conclude that our in vitro functional tests and structural data suggest a correlation between the pattern of integrin expression on defined plasmamembrane domains and the mechanism of epidermal assembly.

1990 ◽  
Vol 96 (2) ◽  
pp. 197-205
Author(s):  
M. Guo ◽  
K. Toda ◽  
F. Grinnell

The purpose of our studies was to learn more about the regulation of keratinocyte migration. Human keratinocytes freshly harvested from skin were relatively immotile cells, whereas keratinocytes harvested from cell culture migrated on type I collagen or fibronectin as measured in a phagokinesis assay. Development of migratory competence by keratinocytes varied depending on the culture substratum. Cells cultured on plastic were activated more quickly and to a greater extent than cells cultured on dermis. The effect of the culture substratum on migratory competence was reversible. That is, cells cultured on plastic showed reduced activity after subculture on dermis. Cells cultured on dermis showed increased activity after subculture on plastic. Freshly isolated as well as cultured keratinocytes contained beta 1 integrin subunits, but only cultured cells were able to organize the subunits into focal adhesions. These adhesion sites also contained vinculin. In epidermal explants, beta 1 integrin subunits were mostly in basal cells, often more prominent between lateral cell borders than at the epidermal-dermal interface. In keratinocytes that migrated out of skin explants, there appeared to be an increase in the intensity of beta 1 integrin subunit immunostaining, possibly because of the change in shape of migrating cells. Also, beta 1 integrin subunits were found around and beneath migrating keratinocytes. These results show that changes in the distribution of beta 1 integrin subunits accompany development of migratory competence.


2010 ◽  
Vol 22 (9) ◽  
pp. 66
Author(s):  
P. K. Nicholls ◽  
P. G. Stanton ◽  
K. L. Walton ◽  
R. I. McLachlan ◽  
L. O'Donnell ◽  
...  

Spermatogenesis is absolutely dependent on follicle stimulating hormone (FSH) and androgens; acute suppression of these hormones inhibits germ cell development and thus sperm production. The removal of intercellular junctions and release of spermatids by the Sertoli cell, a process known as spermiation, is particularly sensitive to acute hormone suppression(1). To define the molecular mechanisms that mediate FSH and androgen effects in the testis, we investigated the expression and hormonal regulation of micro-RNAs (miRNA), small non-coding RNAs that regulate protein translation and modify cellular responses. By array analysis, we identified 23 miRNAs that were upregulated >2-fold in stage VIII seminiferous tubules following hormone suppression, and in vitro in primary Sertoli cells. We subsequently validated the expression and hormonal regulation of several miRNAs, including miR-23b, -30d and -690 by quantitative PCR in primary Sertoli cells. Bioinformatic analysis of potential targets of hormonally-suppressed miRNAs identified genes associated with Focal adhesions (54 genes, P = –ln(17.97)) and the Regulation of the actin cytoskeleton (52 genes, P = –ln(10.16)), processes known to be intimately associated with adhesion of spermatids to Sertoli cells(2, 3). Furthermore, this analysis identified numerous components of the testicular tubulobulbar complex (TBC) as being targets of hormonally sensitive miRNAs. The TBC is a podosome-like structure between Sertoli and adjacent spermatids in the testis, which internalises intact inter-cellular junctions by endocytotic mechanisms prior to spermiation(4). We then demonstrate the hormonal regulation of predicted miRNA target proteins, and validate novel inhibitory miRNA interactions with Pten, nWASP, Eps15 and Picalm by luciferase knockdown in vitro. We hypothesise that hormonally suppressed miRNAs inhibit TBC function, and subsequently, endocytosis of intercellular junctions. In conclusion, we have demonstrated that hormonal suppression in the testis stimulates the expression of a subset of Sertoli cell miRNAs that are likely regulators of cell adhesion protein networks involved in spermiation. (1) Saito K, O’Donnell L, McLachlan RI, Robertson DM 2000 Spermiation failure is a major contributor to early spermatogenic suppression caused by hormone withdrawal in adult rats. Endocrinology 141: 2779–2.(2) O’Donnell L, Stanton PG, Bartles JR, Robertson DM 2000 Sertoli cell ectoplasmic specializations in the seminiferous epithelium of the testosterone-suppressed adult rat. Biol Reprod 63: 99–108.(3) Beardsley A, Robertson DM, O’Donnell L 2006 A complex containing alpha6beta1-integrin and phosphorylated focal adhesion kinase between Sertoli cells and elongated spermatids during spermatid release from the seminiferous epithelium. J Endocrinol 190(3): 759–70.(4) Young JS, Guttman JA, Vaid KS, Vogl AW 2009 Tubulobulbar complexes are intercellular podosome-like structures that internalize intact intercellular junctions during epithelial remodeling events in the rat testis. Biol Reprod 80: 162–74.


Bone Research ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Lei Qin ◽  
Wen Liu ◽  
Huiling Cao ◽  
Guozhi Xiao

Abstract Osteocytes, the most abundant and long-lived cells in bone, are the master regulators of bone remodeling. In addition to their functions in endocrine regulation and calcium and phosphate metabolism, osteocytes are the major responsive cells in force adaptation due to mechanical stimulation. Mechanically induced bone formation and adaptation, disuse-induced bone loss and skeletal fragility are mediated by osteocytes, which sense local mechanical cues and respond to these cues in both direct and indirect ways. The mechanotransduction process in osteocytes is a complex but exquisite regulatory process between cells and their environment, between neighboring cells, and between different functional mechanosensors in individual cells. Over the past two decades, great efforts have focused on finding various mechanosensors in osteocytes that transmit extracellular mechanical signals into osteocytes and regulate responsive gene expression. The osteocyte cytoskeleton, dendritic processes, Integrin-based focal adhesions, connexin-based intercellular junctions, primary cilium, ion channels, and extracellular matrix are the major mechanosensors in osteocytes reported so far with evidence from both in vitro and in vitro studies. This review aims to give a systematic introduction to osteocyte mechanobiology, provide details of osteocyte mechanosensors, and discuss the roles of osteocyte mechanosensitive signaling pathways in the regulation of bone homeostasis.


2005 ◽  
Vol 86 (3) ◽  
pp. 611-621 ◽  
Author(s):  
Sharon Shnitman Magal ◽  
Anna Jackman ◽  
Shahar Ish-Shalom ◽  
Liat Edri Botzer ◽  
Pinhas Gonen ◽  
...  

Previous studies have shown that human papillomavirus (HPV) 16 E6 inhibits apoptosis induced during terminal differentiation of primary human keratinocytes (PHKs) triggered by serum and calcium. E6 inhibition of apoptosis was accompanied with prolonged expression of Bcl-2 and reduced elevation of Bax levels. In the present study, the effect of E6 on Bax mRNA expression and protein stability was investigated. These studies indicate that stable E6 expression in differentiating keratinocytes reduced the steady-state levels of Bax mRNA and shortened the half-life of Bax protein. These results were confirmed in transiently transfected 293T cells where E6 degraded Bax in a dose-dependent manner. Bax degradation was also exhibited in Saos-2 cells that lack p53, indicating its p53 independence. E6 did not form complexes with Bax and did not induce Bax degradation in vitro under experimental conditions where p53 was degraded. Finally, E6 aa 120–132 were shown to be necessary for Bax destabilization and, more importantly, for abrogating the ability of Bax to induce cellular apoptosis, highlighting the functional consequences of the E6-induced alterations in Bax expression.


1993 ◽  
Vol 121 (1) ◽  
pp. 171-178 ◽  
Author(s):  
F Balzac ◽  
A M Belkin ◽  
V E Koteliansky ◽  
Y V Balabanov ◽  
F Altruda ◽  
...  

We have previously described a variant form of the integrin beta 1 subunit (beta 1B)1 characterized by an altered sequence at the cytoplasmic domain. Using polyclonal antibodies to a synthetic peptide corresponding to the unique sequence of the beta 1B, we analyzed the expression of this molecule in human tissues and cultured cells. Western blot analysis showed that the beta 1B is expressed in skin and liver and, in lower amounts, in skeletal and cardiac muscles. The protein was not detectable in brain, kidney, and smooth muscle. In vitro cultured keratinocytes and hepatoma cells are positive, but fibroblasts, endothelial cells, and smooth muscle cells are negative. An astrocytoma cell line derived from immortalized fetal astrocytes was found to express beta 1B. In these cells beta 1B represent integral of 30% of the beta 1 and form heterodimers with alpha 1 and alpha 5 subunits. To investigate the functional properties of beta 1B, the full-length cDNA coding for this molecule was transfected into CHO cells. Stable transfectants were selected and the beta 1B was identified by a mAb that discriminate between the transfected human protein and the endogenous hamster beta 1A. Immunoprecipitation experiments indicated that the beta 1B was exported at the cell surface in association with the endogenous hamster alpha subunits. The alpha 5/beta 1B complex bound to a fibronectin-affinity matrix and was specifically released by RGD-containing peptides. Thus beta 1B and beta 1A are similar as far as the alpha/beta association and fibronectin binding are concerned. The two proteins differ, however, in their subcellular localization. Immunofluorescence studies indicated, in fact, that beta 1B, in contrast to beta 1A, does not localize in focal adhesions. The restricted tissue distribution and the distinct subcellular localization, suggest that beta 1B has unique functional properties.


2004 ◽  
Vol 287 (4) ◽  
pp. C1103-C1113 ◽  
Author(s):  
Christopher D. O’Brien ◽  
Gaoyuan Cao ◽  
Antonis Makrigiannakis ◽  
Horace M. DeLisser

Platelet endothelial cell adhesion molecule (PECAM-1), a transmembrane glycoprotein, has been implicated in angiogenesis, with recent evidence indicating the involvement of PECAM-1 in endothelial cell motility. The cytoplasmic domain of PECAM-1 contains two tyrosine residues, Y663 and Y686, that each fall within an immunoreceptor tyrosine-based inhibitory motif (ITIM). When phosphorylated, these residues together mediate the binding of the protein tyrosine phosphatase SHP-2. Because SHP-2 has been shown to be involved in the turnover of focal adhesions, a phenomenon required for efficient cell motility, the association of this phosphatase with PECAM-1 via its ITIMs may represent a mechanism by which PECAM-1 might facilitate cell migration. Studies were therefore done with cell transfectants expressing wild-type PECAM or mutant PECAM-1 in which residues Y663 and Y686 were mutated. These mutations eliminated PECAM-1 tyrosine phosphorylation and the association of PECAM-1 with SHP-2 but did not impair the ability of the molecule to localize at intercellular junctions or to bind homophilically. However, in vitro cell motility and tube formation stimulated by the expression of wild-type PECAM-1 were abrogated by the mutation of these tyrosine residues. Importantly, during wound-induced migration, the number of focal adhesions as well as the level of tyrosine phosphorylated paxillin detected in cells expressing wild-type PECAM-1 were markedly reduced compared with control cells or transfectants with mutant PECAM-1. These data suggest that, in vivo, the binding of SHP-2 to PECAM-1, via PECAM-1’s ITIM domains, promotes the turnover of focal adhesions and, hence, endothelial cell motility.


Reproduction ◽  
2020 ◽  
Vol 159 (4) ◽  
pp. 465-478
Author(s):  
Theodore T Wing ◽  
David W Erikson ◽  
Robert C Burghardt ◽  
Fuller W Bazer ◽  
Kayla J Bayless ◽  
...  

Angiogenesis is fundamental to the expansion of the placental vasculature during pregnancy. Integrins are associated with vascular formation; and osteopontin is a candidate ligand for integrins to promote angiogenesis. Endothelial progenitor cells (EPCs) are released from bone marrow into the blood and incorporate into newly vascularized tissue where they differentiate into mature endothelium. Results of studies in women suggest that EPCs may play an important role in maintaining placental vascular integrity during pregnancy, although little is known about how EPCs are recruited to these tissues. Our goal was to determine the αv integrin mediated effects of osteopontin on EPC adhesion and incorporation into angiogenic vascular networks. EPCs were isolated from 6 h old piglets. RT-PCR revealed that EPCs initially had a monocyte-like phenotype in culture that became more endothelial-like with cell passage. Immunofluorescence microscopy confirmed that the EPCs express platelet endothelial cell adhesion molecule, vascular endothelial cadherin, and von Willebrand factor. When EPCs were cultured on OPN-coated slides, the αv integrin subunit was observed in focal adhesions at the basal surface of EPCs. Silencing of αv integrin reduced EPC binding to OPN and focal adhesion assembly. In vitro siRNA knockdown in EPCs,demonstrated that OPN stimulates EPC incorporation into human umbilical vein endothelial cell (HUVEC) networks via αv-containing integrins. Finally, in situ hybridization and immunohistochemistry localized osteopontin near placental blood vessels. In summary, OPN binds the αv integrin subunit on EPCs to support EPC adhesion and increase EPC incorporation into angiogenic vascular networks.


Author(s):  
A. R. Crooker ◽  
M. C. Myers ◽  
T. L. Beard ◽  
E. S. Graham

Cell culture systems have become increasingly popular as a means of screening toxic agents and studying toxic mechanisms of drugs and other chemicals at the cellular and subcellular levels. These in vitro tests can be conducted rapidly in a broad range of relevant mammalian culture systems; a variety of biological and biochemical cytotoxicity endpoints can be examined. The following study utilized human keratinocytes to evaluate the relative cytotoxicities of nitrofurazone (NF) and silver sulfadiazine (SS), the active ingredients of FURACIN(R) Topical Cream and SILVADENE(R) Cream, respectively. These compounds are anti-infectives used in the treatment of burn patients. Cell ultrastructure and elemental composition were utilized as cytotoxicity endpoints.Normal Human Epidermal Keratinocytes (HK) were prepared from the EpiPackTM culture system (Clonetics Corporation, Boulder, CO). For scanning electron microscopy (SEM) and transmission electron microscopy (TEM), cells were seeded on sterile 35 mm Falcon plastic dishes; for elemental microanalysis, cells were plated on polished pyrolytic carbon discs (E. Fullam, Latham, NY) placed in the culture dishes.


Author(s):  
D.J.P. Ferguson ◽  
M. Virji ◽  
H. Kayhty ◽  
E.R. Moxon

Haemophilus influenzae is a human pathogen which causes meningitis in children. Systemic H. influenzae infection is largely confined to encapsulated serotype b organisms and is a major cause of meningitis in the U.K. and elsewhere. However, the pathogenesis of the disease is still poorly understood. Studies in the infant rat model, in which intranasal challenge results in bacteraemia, have shown that H. influenzae enters submucosal tissues and disseminates to the blood stream within minutes. The rapidity of these events suggests that H. influenzae penetrates both respiratory epithelial and endothelial barriers with great efficiency. It is not known whether the bacteria penetrate via the intercellular junctions, are translocated within the cells or carried across the cellular barrier in 'trojan horse' fashion within phagocytes. In the present studies, we have challenged cultured human umbilical cord_vein endothelial cells (HUVECs) with both capsulated (b+) and capsule-deficient (b-) isogenic variants of one strain of H. influenzae in order to investigate the interaction between the bacteria and HUVEC and the effect of the capsule.


Author(s):  
D. Chrétien ◽  
D. Job ◽  
R.H. Wade

Microtubules are filamentary structures found in the cytoplasm of eukaryotic cells, where, together with actin and intermediate filaments, they form the components of the cytoskeleton. They have many functions and show various levels of structural complexity as witnessed by the singlet, doublet and triplet structures involved in the architecture of centrioles, basal bodies, cilia and flagella. The accepted microtubule model consists of a 25 nm diameter hollow tube with a wall made up of 13 paraxial protofilaments (pf). Each pf is a string of aligned tubulin dimers. Some results have suggested that the pfs follow a superhelix. To understand how microtubules function in the cell an accurate model of the surface lattice is one of the requirements. For example the 9x2 architecture of the axoneme will depend on the organisation of its component microtubules. We should also note that microtubules with different numbers of pfs have been observed in thin sections of cellular and of in-vitro material. An outstanding question is how does the surface lattice adjust to these different pf numbers?We have been using cryo-electron microscopy of frozen-hydrated samples to study in-vitro assembled microtubules. The experimental conditions are described in detail in this reference. The results obtained in conjunction with thin sections of similar specimens and with axoneme outer doublet fragments have already allowed us to characterise the image contrast of 13, 14 and 15 pf microtubules on the basis of the measured image widths, of the the image contrast symmetry and of the amplitude and phase behaviour along the equator in the computed Fourier transforms. The contrast variations along individual microtubule images can be interpreted in terms of the geometry of the microtubule surface lattice. We can extend these results and make some reasonable predictions about the probable surface lattices in the case of other pf numbers, see Table 1. Figure 1 shows observed images with which these predictions can be compared.


Sign in / Sign up

Export Citation Format

Share Document