scholarly journals Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts.

1993 ◽  
Vol 121 (1) ◽  
pp. 101-111 ◽  
Author(s):  
M Pagano ◽  
R Pepperkok ◽  
J Lukas ◽  
V Baldin ◽  
W Ansorge ◽  
...  

In mammalian cells inhibition of the cdc2 function results in arrest in the G2-phase of the cell cycle. Several cdc2-related gene products have been identified recently and it has been hypothesized that they control earlier cell cycle events. Here we have studied the relationship between activation of one of these cdc2 homologs, the cdk2 protein kinase, and the progression through the cell cycle in cultured human fibroblasts. We found that cdk2 was activated and specifically localized to the nucleus during S phase and G2. Microinjection of affinity-purified anti-cdk2 antibodies but not of affinity-purified anti-cdc2 antibodies, during G1, inhibited entry into S phase. The specificity of these effects was demonstrated by the fact that a plasmid-driven cdk2 overexpression counteracted the inhibition. These results demonstrate that the cdk2 protein kinase is involved in the activation of DNA synthesis.

1997 ◽  
Vol 17 (3) ◽  
pp. 1425-1433 ◽  
Author(s):  
S E Lee ◽  
R A Mitchell ◽  
A Cheng ◽  
E A Hendrickson

Mice homozygous for the scid (severe combined immune deficiency) mutation are defective in the repair of DNA double-strand breaks (DSBs) and are consequently very X-ray sensitive and defective in the lymphoid V(D)J recombination process. Recently, a strong candidate for the scid gene has been identified as the catalytic subunit of the DNA-dependent protein kinase (DNA-PK) complex. Here, we show that the activity of the DNA-PK complex is regulated in a cell cycle-dependent manner, with peaks of activity found at the G1/early S phase and again at the G2 phase in wild-type cells. Interestingly, only the deficit of the G1/early S phase DNA-PK activity correlated with an increased hypersensitivity to X-irradiation and a DNA DSB repair deficit in synchronized scid pre-B cells. Finally, we demonstrate that the DNA-PK activity found at the G2 phase may be required for exit from a DNA damage-induced G2 checkpoint arrest. These observations suggest the presence of two pathways (DNA-PK-dependent and -independent) of illegitimate mammalian DNA DSB repair and two distinct roles (DNA DSB repair and G2 checkpoint traversal) for DNA-PK in the cellular response to ionizing radiation.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 5125-5125
Author(s):  
Cintia Do Couto Mascarenhas ◽  
Anderson Ferreira Cunha ◽  
Ana Flavia Brugnerotto ◽  
Sheley Gambero ◽  
Joao Machado-Neto ◽  
...  

Abstract Abstract 5125 The TOB1 gene is a transcription factor responsible for the transduction of the gene ERBB2. It is a member of a family of cell suppressor proliferation proteins called TOB/BTG1 family; also, this gene operates on the inhibition of neoplastic transformation. The TOB1 gene presents a decreased expression in several types of cancer such as lung, breast, thyroid and stomach cancer. However, the function of this gene in chronic myeloid leukemia (CML) remains unknown. Aiming to evaluate the inhibition of gene TOB1 into BCR-ABL positive cells and trying to elucidate the molecular mechanisms associated with the inhibition of this gene in the CML we proceed to a more detailed study of this gene. The inhibition of this gene in K562 cells was performed using specific lentivirus. The effect of silencing TOB1 in the proliferation of K562 cells was assessed by the MTT assay after 48 hours of culture; in shTOB1 the proliferation was increased in comparison with shControl cells. To evaluate the synergistic effect between the inhibition of kinase tyrosine activity of BCR-ABL and the inhibition of TOB1 we performed a treatment with different concentrations of imatinib (0. 1, 0. 5 and 1μM), but we observed the decrease in cell proliferation of shTOB1 cells to similar levels of shControl cells only at the 1μM concentration. Therefore, the TOB1 silencing increased the proliferation of K562 cells without an additional effect of a treatment with Imatinib. To analyze the clonogenicity, we performed a formation of colonies assay, in methylcellulose, to determine whether silencing TOB1 could cause a change in the clonal growth of positive BCR-ABL cells. There was no significant change in the number of colonies that grew in cell culture shTOB1 compared to shControl cells. These results suggest that silencing TOB1 in K562 cells may not change the clonogenicity. In the assessment of cell cycle, the flow cytometry analysis revealed a significant accumulation of K562 cells in S phase, with consequent reduction of cells in the G2 phase of the cell cycle in cells shTOB1 compared to cells shControl. The TOB1 gene silencing in K562 cells kept the cells in the S phase and prevented the entry of cells in the G2 phase showing that the inhibition of gene TOB1 induced an increase in proliferation of K562 BCR-ABL cells. The level of apoptosis was assessed by flow cytometry after labeling the cells with anexin-V/PI. The Imatinib treatment presented dose-response in the induction of apoptosis as expected. However, a cumulative effect with TOB1 silencing was not observed. Furthermore, the apoptosis was also assessed by assays of caspases 3, 8 and 9, which showed an increase of the caspase activity of shControl cells in relation of the shTOB1 cells, showing that inhibition of this gene also changes the level of apoptosis. These results corroborate the literature data that report the relationship of this tumour suppressor gene in signalling pathways related to angiogenesis, carcinogenesis, apoptosis and metastasis. When we relate the results obtained with the LMC, we can consider the possibility of TOB1 regulation changes be related to modification of important signalling pathways such as AKT, PI3K, STAT3 and STAT5, among others. Furthermore, the inhibition of TOB1 may be related with an increase on the number of BCR-ABL positive cells and subsequent disease progression. In conclusion, this study confirmed literature data showing that TOB1 gene works as a tumour suppressor protein in cells of many types of cancer. From this work we can infer that in CML the expression of this gene is transformed, resulting in changing of the capacity of induction of apoptosis, decrease tumour necrosis and increase cell proliferation. This work was supported by FAPESP and INCT. Disclosures: No relevant conflicts of interest to declare.


2001 ◽  
Vol 21 (10) ◽  
pp. 3445-3450 ◽  
Author(s):  
Bo Xu ◽  
Seong-tae Kim ◽  
Michael B. Kastan

ABSTRACT Cell cycle arrests in the G1, S, and G2phases occur in mammalian cells after ionizing irradiation and appear to protect cells from permanent genetic damage and transformation. Though Brca1 clearly participates in cellular responses to ionizing radiation (IR), conflicting conclusions have been drawn about whether Brca1 plays a direct role in cell cycle checkpoints. Normal Nbs1 function is required for the IR-induced S-phase checkpoint, but whether Nbs1 has a definitive role in the G2/M checkpoint has not been established. Here we show that Atm and Brca1 are required for both the S-phase and G2 arrests induced by ionizing irradiation while Nbs1 is required only for the S-phase arrest. We also found that mutation of serine 1423 in Brca1, a target for phosphorylation by Atm, abolished the ability of Brca1 to mediate the G2/M checkpoint but did not affect its S-phase function. These results clarify the checkpoint roles for each of these three gene products, demonstrate that control of cell cycle arrests must now be included among the important functions of Brca1 in cellular responses to DNA damage, and suggest that Atm phosphorylation of Brca1 is required for the G2/M checkpoint.


1995 ◽  
Vol 15 (7) ◽  
pp. 3722-3730 ◽  
Author(s):  
D K Orren ◽  
L N Petersen ◽  
V A Bohr

We have studied the effect of UV irradiation on the cell cycle progression of synchronized Chinese hamster ovary cells. Synchronization of cells in S or G2 phase was accomplished by the development of a novel protocol using mimosine, which blocks cell cycle progression at the G1/S boundary. After removal of mimosine, cells proceed synchronously through the S and G2 phases, allowing manipulation of cells at specific points in either phase. Synchronization of cells in G1 was achieved by release of cells after a period of serum starvation. Cells synchronized by these methods were UV irradiated at defined points in G1, S, and G2, and their subsequent progression through the cell cycle was monitored. UV irradiation of G1-synchronized cells caused a dose-dependent delay in entry into S phase. Irradiation of S-phase-synchronized cells inhibited progression through S phase and then resulted in accumulation of cells for a prolonged interval in G2. Apoptosis of a subpopulation of cells during this extended period was noted. UV irradiation of G2-synchronized cells caused a shorter G2 arrest. The arrest itself and its duration were dependent upon the timing (within G2 phase) of the irradiation and the UV dose, respectively. We have thus defined a previously undescribed (in mammalian cells) UV-responsive checkpoint in G2 phase. The implications of these findings with respect to DNA metabolism are discussed.


1983 ◽  
Vol 3 (2) ◽  
pp. 172-181
Author(s):  
J Van't Hof ◽  
C A Bjerknes ◽  
N C Delihas

Experiments with cultured pea roots were conducted to determine (i) whether extrachromosomal DNA was produced by cells in the late S phase or in the G2 phase of the cell cycle, (ii) whether the maturation of nascent DNA replicated by these cells achieved chromosomal size, (iii) when extrachromosomal DNA was removed from the chromosomal duplex, and (iv) the replication of nascent chains by the extrachromosomal DNA after its release from the chromosomal duplex. Autoradiography and cytophotometry of cells of carbohydrate-starved root tips revealed that extrachromosomal DNA was produced by a small fraction of cells accumulated in the late S phase after they had replicated about 80% of their DNA. Velocity sedimentation of nascent chromosomal DNA in alkaline sucrose gradients indicated that the DNA of cells in the late S phase failed to achieve chromosomal size. After reaching sizes of 70 X 10(6) to 140 X 10(6) daltons, some of the nascent chromosomal molecules were broken, presumably releasing extrachromosomal DNA several hours later. Sedimentation of selectively extracted extrachromosomal DNA either from dividing cells or from those in the late S phase showed that it replicated two nascent chains, one of 3 X 10(6) daltons and another of 7 X 10(6) daltons. Larger molecules of extrachromosomal DNA were detectable after cells were labeled for 24 h. These two observations were compatible with the idea that the extrachromosomal DNA was first replicated as an integral part of the chromosomal duplex, was cut from the duplex, and then, once free of the chromosome, replicated two smaller chains of 3 X 10(6) and 7 X 10(6) daltons.


1985 ◽  
Vol 225 (2) ◽  
pp. 529-533 ◽  
Author(s):  
A J Strain ◽  
W A H Wallace ◽  
A H Wyllie

Synchronized CV-1 cells were transfected with SV40 (simian virus 40) DNA-calcium phosphate co-precipitates. In the presence of carrier DNA, the transfection efficiency of SV40 DNA was decreased 5-fold in S-phase cells and was increased 4-fold in preparations of mitotically enriched cells as compared with asynchronous controls. No difference was observed when carrier DNA was omitted, when cells had progressed through S-phase and into G2-phase, or when the infectivity of cells to intact SV40 virus was tested. These results highlight the importance of cell-cycle-dependent factors on DNA-mediated gene transfer.


1991 ◽  
Vol 11 (8) ◽  
pp. 4045-4052 ◽  
Author(s):  
S Garrett ◽  
M M Menold ◽  
J R Broach

Null mutations in the gene YAK1, which encodes a protein with sequence homology to known protein kinases, suppress the cell cycle arrest phenotype of mutants lacking the cyclic AMP-dependent protein kinase (A kinase). That is, loss of the YAK1 protein specifically compensates for loss of the A kinase. Here, we show that the protein encoded by YAK1 has protein kinase activity. Yak1 kinase activity is low during exponential growth but is induced at least 50-fold by arrest of cells prior to the completion of S phase. Induction is not observed by arrest at stages later in the cell cycle. Depending on the arrest regimen, induction can occur either by an increase in Yak1 protein levels or by an increase in Yak1 specific activity. Finally, an increase in Yak1 protein levels causes growth arrest of cells with attenuated A kinase activity. These results suggest that Yak1 acts in a pathway parallel to that of the A kinase to negatively regulate cell proliferation.


Author(s):  
Deqin Kong ◽  
Rui Liu ◽  
Jiangzheng Liu ◽  
Qingbiao Zhou ◽  
Jiaxin Zhang ◽  
...  

Cubic membranes (CMs) represent unique biological membrane structures with highly curved three-dimensional periodic minimal surfaces, which have been observed in a wide range of cell types and organelles under various stress conditions (e. g., starvation, virus-infection, and oxidation). However, there are few reports on the biological roles of CMs, especially their roles in cell cycle. Hence, we established a stable cell population of human hepatocellular carcinoma cells (HepG2) of 100% S phase by thymidine treatment, and determined certain parameters in G2 phase released from S phase. Then we found a close relationship between CMs formation and cell cycle, and an increase in reactive oxygen species (ROS) and mitochondrial function. After the synchronization of HepG2 cells were induced, CMs were observed through transmission electron microscope in G2 phase but not in G1, S and M phase. Moreover, the increased ATP production, mitochondrial and intracellular ROS levels were also present in G2 phase, which demonstrated a positive correlation with CMs formation by Pearson correlation analysis. This study suggests that CMs may act as an antioxidant structure in response to mitochondria-derived ROS during G2 phase and thus participate in cell cycle progression.


1988 ◽  
Vol 8 (10) ◽  
pp. 4576-4578 ◽  
Author(s):  
S Dalton ◽  
J R Wells

Levels of trans-acting factor (H1-SF) binding to the histone H1 gene-specific motif (5'-AAACACA-3' [L. S. Coles and J. R. E. Wells, Nucleic Acids Res. 13:585-594, 1985]) increase 12-fold from G1 to S-phase in synchronized cells and decrease again in G2 phase of the cell cycle. Since the H1 element is required for S-phase expression of H1 genes (S. Dalton and J. R. E. Wells, EMBO J. 7:49-56, 1988), it is likely that the increased levels of H1-SF binding component play an important role in S-phase regulation of H1 gene transcription.


1987 ◽  
Vol 88 (5) ◽  
pp. 579-590
Author(s):  
MICHAEL STÖHR ◽  
KURT BOMMERT ◽  
INGRID SCHULZE ◽  
HELGA JANTZEN

The cell cycle and the relationship between particular cell cycle phases and the differentiation of trophozoites into cysts were reinvestigated in Acanthamoeba castellanii using flow fluorometric measurements of nuclear DNA content and synthesis and synchronization of cells by release from the stationary phase. The investigation was performed with cultures growing in non-defined medium (ND cells) showing a high degree of encystation in response to starvation and with subcultures growing in chemically defined nutrient medium (D cells) exhibiting a very low encystation competence. In both cultures the cell cycle starts with a short S phase taking place simultaneously with cytokinesis followed by a long G2 phase. A G1 phase seems to be either absent or very short. Synchronization experiments reveal that in ND cells encystation is initiated from a particular position of late G2. The high encystation competence of stationary phase ND cells seems to be due to arrest of cells at this particular cell cycle position. The lack of encystation competence of stationary phase D cells correlates with the loss of accumulation of cells at this particular stage of the cell cycle. This change of the property of cells is related to the growth condition and not to an irreversible loss of encystation competence of D cells.


Sign in / Sign up

Export Citation Format

Share Document