scholarly journals Identification of the carboxy terminus as important for the isoform-specific subcellular targeting of glucose transporter proteins.

1993 ◽  
Vol 123 (1) ◽  
pp. 137-147 ◽  
Author(s):  
K J Verhey ◽  
S F Hausdorff ◽  
M J Birnbaum

Differential trafficking of glucose transporters contributes significantly to the establishment of a cell's capacity for hormone-regulatable hexose uptake. In the true insulin-sensitive peripheral target tissues, muscle and adipose, the transporter isoform GLUT1 residues on the cell surface and interior of the cell whereas the highly homologous isoform GLUT4 displays virtually exclusive intracellular sequestration, allowing the latter to redistribute to the cell surface in response to hormone. These patterns are equally pronounced in cells into which the transporters have been introduced by DNA-mediated gene transfer, suggesting that signals for isoform-specific sorting are recognized in diverse cell types. To determine the primary sequences responsible for the characteristic distributions, chimeric transporters were constructed in which reciprocal domains were exchanged between GLUT1 and GLUT4. In addition, a non-disruptive, species-specific epitope "tag" was introduced into a neutral region of the transporter to allow analysis of reciprocal chimeras using a single antibody. These recombinant transporters were stably expressed in HIH 3T3 and PC12 cells by retrovirus-mediated gene transfer, and were localized by indirect immunofluorescence and laser scanning confocal microscopy, as well as by staining of plasma membrane sheets prepared from these cells. The results indicate that the carboxy-terminal 30 amino acids are primarily responsible for the differential targeting of the glucose transporter isoforms GLUT1 and GLUT4, though there is a lesser additional contribution by the amino-terminal 183 amino acids.

1995 ◽  
Vol 130 (5) ◽  
pp. 1081-1091 ◽  
Author(s):  
B J Marsh ◽  
R A Alm ◽  
S R McIntosh ◽  
D E James

Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQI in the NH2 terminus and LL in the COOH terminus-resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F5 to A5) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (L489L490 to A489A490) caused an increase in cell surface distribution only at higher levels of expression, but the overall cells surface distribution of this mutant was less than that of the amino-terminal mutants. Both NH2- and COOH-terminal mutants retained insulin-dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin-dependent redistribution of GLUT-4. We conclude that the phenylalanine-based NH2-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8751 ◽  
Author(s):  
Silke Morris ◽  
Niall D. Geoghegan ◽  
Jessica B.A. Sadler ◽  
Anna M. Koester ◽  
Hannah L. Black ◽  
...  

Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA–GLUT4–GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA–GLUT4–GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells.


1992 ◽  
Vol 116 (3) ◽  
pp. 785-797 ◽  
Author(s):  
A W Hudson ◽  
M Ruiz ◽  
M J Birnbaum

GLUT1, the erythrocyte glucose transporter, and GLUT4, the adipose/muscle transporter, were each expressed in NIH-3T3 cells by retrovirus-mediated gene transfer. In fibroblasts overexpressing GLUT1, basal as well as insulin-stimulated deoxyglucose uptake was increased. Expression of GLUT4 was without affect on either basal or hormone stimulated hexose uptake. Localization of each of the transporters by indirect immunofluorescence revealed that, whereas GLUT1 was found primarily on the cell surface, GLUT4 was directed to vesicles in a perinuclear distribution and throughout the cytoplasm. The GLUT4-containing compartment represented neither Golgi complex nor lysosomes, as evidenced by the failure of lgp110 or Golgi mannosidase to co-localize. However, there was substantial overlap between the distribution of GLUT4 and the transferrin receptor, and some colocalization of the transporter isoform with the manose-6-phosphate receptor. In addition, when FITC-wheat germ agglutinin bound to the cell surface was allowed to internalize at 37 degrees C, it concentrated in vesicular structures coincident with GLUT4 immunoreactivity. These data establish that GLUT1 and GLUT4 contain within their amino acid sequences information which dictates targeting to distinct cellular compartments. Moreover, GLUT4 can be recognized by those cellular factors which direct membrane proteins to the endosomal pathway.


2009 ◽  
Vol 29 (12) ◽  
pp. 1879-1884 ◽  
Author(s):  
Christoph M Zehendner ◽  
Heiko J Luhmann ◽  
Christoph RW Kuhlmann

The blood–brain barrier (BBB) closely interacts with the neuronal parenchyma in vivo. To replicate this interdependence in vitro, we established a murine coculture model composed of brain endothelial cell (BEC) monolayers with cortical organotypic slice cultures. The morphology of cell types, expression of tight junctions, formation of reactive oxygen species, caspase-3 activity in BECs, and alterations of electrical resistance under physiologic and pathophysiological conditions were investigated. This new BBB model allows the application of techniques such as laser scanning confocal microscopy, immunohistochemistry, fluorescent live cell imaging, and electrical cell substrate impedance sensing in real time for studying the dynamics of BBB function under defined conditions.


1993 ◽  
Vol 121 (6) ◽  
pp. 1221-1232 ◽  
Author(s):  
R C Piper ◽  
C Tai ◽  
P Kulesza ◽  
S Pang ◽  
D Warnock ◽  
...  

Expression of chimeras, composed of portions of two different glucose transporter isoforms (GLUT-1 and GLUT-4), in CHO cells had indicated that the cytoplasmic NH2 terminus of GLUT-4 contains important targeting information that mediates intracellular sequestration of this isoform (Piper, R. C., C. Tai, J. W. Slot, C. S. Hahn, C. M. Rice, H. Huang, D. E. James. 1992. J. Cell Biol. 117:729-743). In the present studies, the amino acid constituents of the GLUT-4 NH2-terminal targeting domain have been identified. GLUT-4 constructs containing NH2-terminal deletions or alanine substitutions within the NH2 terminus were expressed in CHO cells using a Sindbis virus expression system. Deletion of eight amino acids from the GLUT-4 NH2 terminus or substituting alanine for phenylalanine at position 5 in GLUT-4 resulted in a marked accumulation of the transporter at the plasma membrane. Mutations at other amino acids surrounding Phe5 also caused increased cell surface expression of GLUT-4 but not to the same extent as the Phe5 mutation. GLUT-4 was also localized to clathrin lattices and this colocalization was abolished when either the first 13 amino acids were deleted or when Phe5 was changed to alanine. To ascertain whether the targeting information within the GLUT-4 NH2-terminal targeting domain could function independently of the glucose transporter structure this domain was inserted into the cytoplasmic tail of the H1 subunit of the asialoglycoprotein receptor. H1 with the GLUT-4 NH2 terminus was predominantly localized to an intracellular compartment similar to GLUT-4 and was sequestered more from the cell surface than was the wild-type H1 protein. It is concluded that the NH2 terminus of GLUT-4 contains a phenylalanine-based targeting motif that mediates intracellular sequestration at least in part by facilitating interaction of the transporter with endocytic machinery located at the cell surface.


2009 ◽  
Vol 29 (2) ◽  
pp. 103-109 ◽  
Author(s):  
Shihai Liu ◽  
Qinwen Mao ◽  
Weifeng Zhang ◽  
Xiaojing Zheng ◽  
Ye Bian ◽  
...  

The transduction efficiency of Ad (adenovirus) depends, to some extent, on the expression level of CAR (coxsackievirus and Ad receptor) of a target cell. The low level of CAR on the cell surface is a potential barrier to efficient gene transfer. To overcome this problem, PTD.AdeGFP (where eGFP is enhanced green fluorescent protein) was constructed by modifying the HI loop of Ad5 (Ad type 5) fibre with the Tat (trans-activating) PTD (protein transduction domain) derived from HIV. The present study showed that PTD.AdeGFP significantly improved gene transfer to multiple cell types deficient in expression of CAR. The improvement in gene transfer was not the result of charge-directed binding between the virus and the cell surface. Although PTD.AdeGFP formed aggregates, it infected target cells in a manner different from AdeGFP aggregates precipitated by calcium phosphate. In addition, PTD.AdeGFP was able to transduce target cells in a dynamin-independent pathway. The results provide some new clues as to how PTD.AdeGFP infects target cells. This new vector would be valuable in gene-function analysis and for gene therapy in cancer.


2021 ◽  
Author(s):  
Pardis Pakshir

One of the crucial key targets in treatment of diseases are cell surface proteins, such as receptor complexes, and their associated signaling pathways. The Fc receptor is one of the most important phagocytic receptors of the cells of immune system. The ligand of the Fc gamma receptor is immunoglobulin G (IgG), which triggers the engulfment of foreign molecules coated by antibodies by a process called phagocytosis. A Specialized subset of cells including macrophages engulfs foreign particles by the Fc receptor. Another phagocytic receptor of macrophages is the CD36 receptor, which binds the ligand oxLDL and is known to be involved in the development of atherosclerotic lesions in the arteries. A few members of the Tetraspanin proteins have been found to be associated with theses receptors in macrophages. Tetraspanins may act as “molecular facilitators” grouping specific cell-surface proteins and thus increasing the formation and stability of functional signaling complexes. There is a significant amount of research done on the receptors of the surface of macrophages, however, the proteins associated with these receptors, their potential signaling pathways and the mechanisms involved are not yet fully understood. This thesis aims to investigate the presence and potential functional role of the specific Tetraspanin isoforms in Fc and CD36 mediated phagocytosis. Silencing RNA, quantitative assays of phagocytosis, and laser scanning confocal microscopy were used to test the phagocytic efficiency of macrophages in IgG and oxLDL mediated phagocytosis. Understanding the regulatory roles of Tetraspanins can provide insight into various immune diseases.


1994 ◽  
Vol 107 (9) ◽  
pp. 2403-2416 ◽  
Author(s):  
H.J. van de Velde ◽  
A.J. Roebroek ◽  
N.H. Senden ◽  
F.C. Ramaekers ◽  
W.J. Van de Ven

The novel NSP gene was previously shown to encode, among a variety of neuroendocrine cell types, two 3′-overlapping transcripts, a 3.4 kb one for NSP-A (776 amino acids) and a 1.8 kb one for NSP-C (208 amino acids). The deduced proteins, which were predicted to possess distinct amino-terminal regions, appeared to exhibit some architectural resemblance to known neuroendocrine proteins. In this paper the biochemical characterization and subcellular localization of the two proteins is addressed. In vitro translation of NSP-A and -C RNA produced proteins of about 135 and 23 kDa, respectively. Proteins of similar molecular mass were also detected in immunoprecipitation and western blot analyses of neural and endocrine cells using specific anti-NSP-A or -C antisera; some heterogeneity of NSP-A was observed. NSP-A, but not NSP-C, appeared to be highly phosphorylated and preferentially on serine residues. In immunocytochemical studies, we demonstrated that NSP-A and -C are associated with the endoplasmic reticulum; NSP-A was found to co-localize with SERCA2b, a membrane-associated Ca(2+)-ATPase of the endoplasmic reticulum. In Purkinje cells, we found NSP-immunostaining in the perikaryon, the extensive dendritic tree and the axon, also suggesting association with the smooth endoplasmic reticulum. Biochemical studies of NSP-A provided evidence that NSP-A is strongly associated with microsomal membranes and analysis of deletion mutants of NSP-A revealed that the hydrophobic carboxy-terminal portion of the protein, which is also present in NSP-C, is critical for membrane binding. Through database searches, finally, we found two different NSP-related sequences, one in a sequenced region of human chromosome 19, and the second in a human, pancreatic islet-derived partial cDNA, suggesting that the NSP gene is the prototype of a larger gene family. The results of our studies seem to indicate that the NSP-encoded proteins are novel, membrane-anchored components of the endoplasmic reticulum for which we propose the name reticulons.


2001 ◽  
Vol 21 (14) ◽  
pp. 4785-4806 ◽  
Author(s):  
Jonathan S. Bogan ◽  
Adrienne E. McKee ◽  
Harvey F. Lodish

ABSTRACT In fat and muscle, insulin stimulates glucose uptake by rapidly mobilizing the GLUT4 glucose transporter from a specialized intracellular compartment to the plasma membrane. We describe a method to quantify the relative proportion of GLUT4 at the plasma membrane, using flow cytometry to measure a ratio of fluorescence intensities corresponding to the cell surface and total amounts of a tagged GLUT4 reporter in individual living cells. Using this assay, we demonstrate that both 3T3-L1 and CHO cells contain intracellular compartments from which GLUT4 is rapidly mobilized by insulin and that the initial magnitude and kinetics of redistribution to the plasma membrane are similar in these two cell types when they are cultured identically. Targeting of GLUT4 to a highly insulin-responsive compartment in CHO cells is modulated by culture conditions. In particular, we find that amino acids regulate distribution of GLUT4 to this kinetically defined compartment through a rapamycin-sensitive pathway. Amino acids also modulate the magnitude of insulin-stimulated translocation in 3T3-L1 adipocytes. Our results indicate a novel link between glucose and amino acid metabolism.


Sign in / Sign up

Export Citation Format

Share Document