scholarly journals Components of a "dynein regulatory complex" are located at the junction between the radial spokes and the dynein arms in Chlamydomonas flagella.

1994 ◽  
Vol 127 (5) ◽  
pp. 1311-1325 ◽  
Author(s):  
L C Gardner ◽  
E O'Toole ◽  
C A Perrone ◽  
T Giddings ◽  
M E Porter

Previous studies of flagellar mutants have identified six axonemal polypeptides as components of a "dynein regulatory complex" (DRC). The DRC is though to coordinate the activity of the multiple flagellar dyneins, but its location within the axoneme has been unknown (Huang et al., 1982; Piperno et al., 1992). We have used improved chromatographic procedures (Kagami and Kamiya, 1992) and computer averaging of EM images (Mastronarde et al., 1992) to analyze the relationship between the DRC and the dynein arms. Our results suggest that some of the DRC components are located at the base of the second radial spoke in close association with the inner dynein arms. (a) Averages of axoneme cross-sections indicate that inner arm structures are significantly reduced in three DRC mutants (pf3 < pf2 < sup-pf-3 < wt). (b) These defects are more pronounced in distal/medial regions of the axoneme than in proximal regions. (c) Analysis of flagellar extracts by fast protein liquid chromatography and SDS-PAGE indicates that a specific dynein I2 isoform is missing in pf3 and reduced in pf2 and sup-pf-3. Comparison with ida4 and pf3ida4 extracts reveals that this isoform differs from those missing in ida4. (d) When viewed in longitudinal section, all three DRC mutants lack a crescent-shaped density above the second radial spoke, and pf3 axonemes lack additional structures adjacent to the crescent. We propose that the crescent corresponds in part to the location of the DRC, and that this structure is also directly associated with a subset of the inner dynein arms. This position is appropriate for a complex that is thought to mediate signals between the radial spokes and the dynein arms.

1992 ◽  
Vol 118 (5) ◽  
pp. 1145-1162 ◽  
Author(s):  
D N Mastronarde ◽  
E T O'Toole ◽  
K L McDonald ◽  
J R McIntosh ◽  
M E Porter

We have used computer averaging of electron micrographs from longitudinal and cross-sections of wild-type and mutant axonemes to determine the arrangement of the inner dynein arms in Chlamydomonas reinhardtii. Based on biochemical and morphological data, the inner arms have previously been described as consisting of three distinct subspecies, I1, I2, and I3. Our longitudinal averages revealed 10 distinguishable lobes of density per 96-nm repeating unit in the inner row of dynein arms. These lobes occurred predominantly but not exclusively in two parallel rows. We have analyzed mutant strains that are missing I1 and I2 subspecies. Cross-sectional averages of pf9 axonemes, which are missing the I1 subspecies, showed a loss of density in both the inner and outer portions of the inner arm. Averages from longitudinal images showed that three distinct lobes were missing from a single region; two of the lobes were near the outer arms but one was more inward. Serial 24-nm cross-sections of pf9 axonemes showed a complete gap at the proximal end of the repeating unit, confirming that the I1 subunit spans both inner and outer portions of the inner arm region. Examination of pf23 axonemes, which are missing both I1 and I2 subspecies, showed an additional loss almost exclusively in the inner portion of the inner arm. In longitudinal view, this additional loss occurred in three separate locations and consisted of three inwardly placed lobes, one adjacent to each of the two radial spokes and the third at the distal end of the repeating unit. These same lobes were absent ida4 axonemes, which lack only the I2 subspecies. The I2 subspecies thus does not consist of a single dynein arm subunit in the middle of the repeating unit. The radial spoke suppressor mutation, pf2, is missing four polypeptides of previously unknown location. Averages of these axonemes were missing a portion of the structures remaining in pf23 axonemes. This result suggests that polypeptides of the radial spoke control system are close to the inner dynein arms.


2007 ◽  
Vol 179 (3) ◽  
pp. 515-526 ◽  
Author(s):  
Erin E. Dymek ◽  
Elizabeth F. Smith

For virtually all cilia and eukaryotic flagella, the second messengers calcium and cyclic adenosine monophosphate are implicated in modulating dynein- driven microtubule sliding to regulate beating. Calmodulin (CaM) localizes to the axoneme and is a key calcium sensor involved in regulating motility. Using immunoprecipitation and mass spectrometry, we identify members of a CaM-containing complex that are involved in regulating dynein activity. This complex includes flagellar-associated protein 91 (FAP91), which shares considerable sequence similarity to AAT-1, a protein originally identified in testis as an A-kinase anchor protein (AKAP)– binding protein. FAP91 directly interacts with radial spoke protein 3 (an AKAP), which is located at the base of the spoke. In a microtubule sliding assay, the addition of antibodies generated against FAP91 to mutant axonemes with reduced dynein activity restores dynein activity to wild-type levels. These combined results indicate that the CaM- and spoke-associated complex mediates regulatory signals between the radial spokes and dynein arms.


1994 ◽  
Vol 126 (3) ◽  
pp. 737-745 ◽  
Author(s):  
S Takada ◽  
R Kamiya

The outer dynein arm of Chlamydomonas flagella, when isolated under Mg(2+)-free conditions, tends to dissociate into an 11 to 12S particle (12S dynein) containing the gamma heavy chain and a 21S particle (called 18S dynein) containing the alpha and beta heavy chains. We show here that functional outer arms can be reconstituted by the addition of 12S and 18S dyneins to the axonemes of the outer armless mutants oda1-oda6. A third factor that sediments at integral 7S is required for efficient reconstitution of the outer arms on the axonemes of oda1 and oda3. However, this factor is not necessary for reconstitution on the axonemes of oda2, oda4, oda5, and oda6. SDS-PAGE analysis indicates that the axonemes of the former two mutants lack a integral of 70-kD polypeptide that is present in those of the other mutants as well as in the 7S fraction from the wild-type extract. Furthermore, electron micrographs of axonemal cross sections revealed that the latter four mutants, but not oda1 or oda3, have small pointed structures on the outer doublets, at a position in cross section where outer arms normally occur. We suggest that the 7S factor constitutes the pointed structure on the outer doublets and facilitates attachment of the outer arm. The discovery of this structure raises a new question as to how the attachment site for the outer arm dynein is determined within the axoneme.


2015 ◽  
Vol 26 (8) ◽  
pp. 1463-1475 ◽  
Author(s):  
Paulina Urbanska ◽  
Kangkang Song ◽  
Ewa Joachimiak ◽  
Lucja Krzemien-Ojak ◽  
Piotr Koprowski ◽  
...  

Dynein motors and regulatory complexes repeat every 96 nm along the length of motile cilia. Each repeat contains three radial spokes, RS1, RS2, and RS3, which transduct signals between the central microtubules and dynein arms. Each radial spoke has a distinct structure, but little is known about the mechanisms of assembly and function of the individual radial spokes. In Chlamydomonas, calmodulin and spoke-associated complex (CSC) is composed of FAP61, FAP91, and FAP251 and has been linked to the base of RS2 and RS3. We show that in Tetrahymena, loss of either FAP61 or FAP251 reduces cell swimming and affects the ciliary waveform and that RS3 is either missing or incomplete, whereas RS1 and RS2 are unaffected. Specifically, FAP251-null cilia lack an arch-like density at the RS3 base, whereas FAP61-null cilia lack an adjacent portion of the RS3 stem region. This suggests that the CSC proteins are crucial for stable and functional assembly of RS3 and that RS3 and the CSC are important for ciliary motility.


1994 ◽  
Vol 127 (6) ◽  
pp. 1683-1692 ◽  
Author(s):  
D R Howard ◽  
G Habermacher ◽  
D B Glass ◽  
E F Smith ◽  
W S Sale

Genetic, biochemical, and structural data support a model in which axonemal radial spokes regulate dynein-driven microtubule sliding in Chlamydomonas flagella. However, the molecular mechanism by which dynein activity is regulated is unknown. We describe results from three different in vitro approaches to test the hypothesis that an axonemal protein kinase inhibits dynein in spoke-deficient axonemes from Chlamydomonas flagella. First, the velocity of dynein-driven microtubule sliding in spoke-deficient mutants (pf14, pf17) was increased to wild-type level after treatment with the kinase inhibitors HA-1004 or H-7 or by the specific peptide inhibitors of cAMP-dependent protein kinase (cAPK) PKI(6-22)amide or N alpha-acetyl-PKI(6-22)amide. In particular, the peptide inhibitors of cAPK were very potent, stimulating half-maximal velocity at 12-15 nM. In contrast, kinase inhibitors did not affect microtubule sliding in axonemes from wild-type cells. PKI treatment of axonemes from a double mutant missing both the radial spokes and the outer row of dynein arms (pf14pf28) also increased microtubule sliding to control (pf28) velocity. Second, addition of the type-II regulatory subunit of cAPK (RII) to spoke-deficient axonemes increased microtubule sliding to wild-type velocity. Addition of 10 microM cAMP to spokeless axonemes, reconstituted with RII, reversed the effect of RII. Third, our previous studies revealed that inner dynein arms from the Chlamydomonas mutants pf28 or pf14pf28 could be extracted in high salt buffer and subsequently reconstituted onto extracted axonemes restoring original microtubule sliding activity. Inner arm dyneins isolated from PKI-treated axonemes (mutant strain pf14pf28) generated fast microtubule sliding velocities when reconstituted onto both PKI-treated or control axonemes. In contrast, dynein from control axonemes generated slow microtubule sliding velocities on either PKI-treated or control axonemes. Together, the data indicate that an endogenous axonemal cAPK-type protein kinase inhibits dynein-driven microtubule sliding in spoke-deficient axonemes. The kinase is likely to reside in close association with its substrate(s), and the substrate targets are not exclusively localized to the central pair, radial spokes, dynein regulatory complex, or outer dynein arms. The results are consistent with a model in which the radial spokes regulate dynein activity through suppression of a cAMP-mediated mechanism.


2015 ◽  
Vol 26 (4) ◽  
pp. 696-710 ◽  
Author(s):  
Krishna Kumar Vasudevan ◽  
Kangkang Song ◽  
Lea M. Alford ◽  
Winfield S. Sale ◽  
Erin E. Dymek ◽  
...  

Radial spokes are conserved macromolecular complexes that are essential for ciliary motility. A triplet of three radial spokes, RS1, RS2, and RS3, repeats every 96 nm along the doublet microtubules. Each spoke has a distinct base that docks to the doublet and is linked to different inner dynein arms. Little is known about the assembly and functions of individual radial spokes. A knockout of the conserved ciliary protein FAP206 in the ciliate Tetrahymena resulted in slow cell motility. Cryo–electron tomography showed that in the absence of FAP206, the 96-nm repeats lacked RS2 and dynein c. Occasionally, RS2 assembled but lacked both the front prong of its microtubule base and dynein c, whose tail is attached to the front prong. Overexpressed GFP-FAP206 decorated nonciliary microtubules in vivo. Thus FAP206 is likely part of the front prong and docks RS2 and dynein c to the microtubule.


2021 ◽  
Author(s):  
Xin Zhang ◽  
Jiang Sun ◽  
Yonggang Lu ◽  
Jintao Zhang ◽  
Keisuke Shimada ◽  
...  

Cilia and flagella are ancient structures that achieve controlled motor functions through the coordinated interaction of structures including dynein arms, radial spokes (RSs), microtubules, and the dynein regulatory complex (DRC). RSs facilitate the beating motion of these organelles by mediating signal transduction between dyneins and a central pair (CP) of singlet microtubules. RS complex isolation from Chlamydomonas axonemes enabled the detection of 23 different proteins (RSP1-23), with the roles of RSP13, RSP15, RSP18, RSP19, and RSP21 remained poorly understood. Herein, we show that Lrrc23 is an evolutionarily conserved testis-enriched gene encoding an RSP15 homolog in mice. Through immunoelectron microscopy, we demonstrate that LRRC23 localizes to the RS complex within murine sperm flagella. We further found that LRRC23 was able to interact with RSHP9 and RSPH3A/B. The knockout of Lrrc23 resulted in RS disorganization and impaired motility in murine spermatozoa, whereas the ciliary beating was unaffected by the loss of this protein. Spermatozoa lacking LRRC23 were unable to efficiently pass through the uterotubal junction and exhibited defective zona penetration. Together these data indicate that LRRC23 is a key regulator underpinning the integrity of RS complex within the flagella of mammalian spermatozoa, whereas it is dispensable in cilia.


1992 ◽  
Vol 118 (6) ◽  
pp. 1455-1463 ◽  
Author(s):  
G Piperno ◽  
K Mead ◽  
W Shestak

We provide indirect evidence that six axonemal proteins here referred to as "dynein regulatory complex" (drc) are located in close proximity with the inner dynein arms I2 and I3. Subsets of drc subunits are missing from five second-site suppressors, pf2, pf3, suppf3, suppf4, and suppf5, that restore flagellar motility but not radial spoke structure of radial spoke mutants. The absence of drc components is correlated with a deficiency of all four heavy chains of inner arms I2 and I3 from axonemes of suppressors pf2, pf3, suppf3, and suppf5. Similarly, inner arm subunits actin, p28, and caltractin/centrin, or subsets of them, are deficient in pf2, pf3, and suppf5. Recombinant strains carrying one of the mutations pf2, pf3, or suppf5 and the inner arm mutation ida4 are more defective for I2 inner arm heavy chains than the parent strains. This evidence indicates that at least one subunit of the drc affects the assembly of and interacts with the inner arms I2.


2011 ◽  
Vol 22 (14) ◽  
pp. 2520-2531 ◽  
Author(s):  
Erin E. Dymek ◽  
Thomas Heuser ◽  
Daniela Nicastro ◽  
Elizabeth F. Smith

The ubiquitous calcium binding protein, calmodulin (CaM), plays a major role in regulating the motility of all eukaryotic cilia and flagella. We previously identified a CaM and Spoke associated Complex (CSC) and provided evidence that this complex mediates regulatory signals between the radial spokes and dynein arms. We have now used an artificial microRNA (amiRNA) approach to reduce expression of two CSC subunits in Chlamydomonas. For all amiRNA mutants, the entire CSC is lacking or severely reduced in flagella. Structural studies of mutant axonemes revealed that assembly of radial spoke 2 is defective. Furthermore, analysis of both flagellar beating and microtubule sliding in vitro demonstrates that the CSC plays a critical role in modulating dynein activity. Our results not only indicate that the CSC is required for spoke assembly and wild-type motility, but also provide evidence for heterogeneity among the radial spokes.


1981 ◽  
Vol 88 (1) ◽  
pp. 73-79 ◽  
Author(s):  
G Piperno ◽  
B Huang ◽  
Z Ramanis ◽  
D J Luck

Polypeptides from flagella or axonemes of Chlamydomonas reinhardtii were analyzed by labeling cellular proteins by prolonged growth on 35S-containing media and using one- and two-dimensional electrophoretic techniques which can resolve greater than 170 axonemal components. By this approach, a paralyzed mutant that lacks axonemal radial spokes, pf14, has been shown to lack 17 polypeptides in the molecular weight range of 20,000 to 124,000 and in the isoelectric point range of 4.8-7.1. Five of those polypeptides are also missing in the mutant pf-1 which lacks only radial spokeheads. The identification of the 17 polypeptides missing in pf-14 as components of radial spoke structures and the localization of the polypeptides lacking in pf-1 within the spokehead, are supported by experiments of chemical dissection of wild-type axonemes. Extraction procedures that solubilize outer and inner dynein arms preserve the structure of the radial spokes along with the 17 polypeptides in question. Six radial spoke polypeptides are solubilized in conditions that cause disassembly of radial spokeheads from the stalks and those components include the five polypeptides missing in pf-1. No Ca++- or Mg++-activated ATPase activities were found to be associated with solubilized preparations of wild-type radial spokeheads. In vivo pulse 32P incorporation experiments provide evidence that greater than 80 axonemal components are labeled by 32P and that five of the radial spoke stalk polypeptides are modified to different extents.


Sign in / Sign up

Export Citation Format

Share Document