scholarly journals Components of the nuclear signaling cascade that regulate collagenase gene expression in response to integrin-derived signals.

1995 ◽  
Vol 129 (6) ◽  
pp. 1707-1720 ◽  
Author(s):  
P Tremble ◽  
C H Damsky ◽  
Z Werb

We have shown previously that the expression of collagenase is upregulated in rabbit synovial fibroblasts cultured on a substrate of antibody to the alpha 5 chain of the alpha 5 beta 1 integrin fibronectin receptor or on the 120-kD cell-binding chymotryptic fragment of plasma fibronectin, but remains at basal levels in cells plated on intact plasma fibronectin. We now have identified some of the components of a signaling pathway that couples the fibronectin receptor to the induction of collagenase transcription. We studied the control of collagenase gene expression in cells adhering to the 120-kD fragment of fibronectin, to antifibronectin receptor antibody, or to plasma fibronectin by transiently introducing promoter-reporter constructs into rabbit synovial fibroblasts before plating cells on these matrices. The constructs contained segments of the human collagenase promoter regulating transcription of chloramphenicol acyl transferase. Expression of constructs containing the -1200/-42-bp segment or the -139/-42-bp segment of the collagenase promoter inserted upstream from the reporter gene was induced to similar extents in cells plated on the 120-kD fragment of fibronectin or on anti-fibronectin receptor antibody, relative to that in fibroblasts plated on fibronectin. The expression of the construct containing the -66/-42-bp segment of the promoter was not regulated and was similar to that of the parent pBLCAT2 plasmid, suggesting that the -139/-67 region of the collagenase promoter, which contains PEA3- and AP1-binding sites, regulates the transcription of collagenase caused by integrin-derived signals. Expression of a reporter construct containing only the PEA3 and AP1 sites in the collagenase promoter (-90/-67) also increased in cells plated on the 120-kD fragment of fibronectin or on anti-fibronectin receptor antibody, relative to that in cells plated on fibronectin. Mutations in either the AP1 or PEA3 site of this minimal promoter abrogated its activity in cells plated on these inductive ligands. Expression of c-fos mRNA increased within 1 h of plating cells on the 120-kD fibronectin fragment or on anti-fibronectin receptor antibody, relative to that in cells plated on fibronectin. c-Fos protein accumulated in the nuclei of fibroblasts within 10 min of plating on the 120-kD fibronectin fragment. The increase in c-Fos was required for the increase in collagenase in cells plated on the 120-kD fibronectin fragment: incubation of cells with antisense, but not sense, c-fos oligonucleotides diminished both basal and induced expression of the -139/-42 collagenase promoter-reporter construct and decreased expression of the endogenous collagenase gene.(ABSTRACT TRUNCATED AT 400 WORDS)

1994 ◽  
Vol 5 (4) ◽  
pp. 439-453 ◽  
Author(s):  
P Tremble ◽  
R Chiquet-Ehrismann ◽  
Z Werb

Tenascin (TN) is a large oligomeric glycoprotein that is present transiently in the extracellular matrix (ECM) of cells and is involved in morphogenetic movements, tissue patterning, and tissue repair. It has multiple domains, both adhesive and anti-adhesive, that interact with cells and with fibronectin (FN) and other ECM macromolecules. We have studied the consequences of the interaction of TN with a FN matrix on gene expression in rabbit synovial fibroblasts. Fibroblasts plated on a mixed substrate of FN and TN, but not on FN alone, upregulated synthesis of four genes: collagenase, stromelysin, the 92-kDa gelatinase, and c-fos. Although the fibroblasts spread well on both FN and FN/TN substrates, nuclear c-Fos increased within 1 h only in cells that were plated on FN/TN. TN did not induce the expression of collagenase in cells plated on substrates of type I collagen or vitronectin (VN). Moreover, soluble TN added to cells adhering to a FN substrate or to serum proteins had no effect, suggesting that TN has an effect only in the context of mixed substrates of FN and TN. Collagenase increased within 4 h of plating on a FN/TN substrate and exhibited kinetics similar to those for induction of collagenase gene expression by signaling through the integrin FN receptor. Arg-Gly-Asp peptide ligands that recognize either the FN receptor or the VN receptor and function-perturbing anti-integrin monoclonal antibodies diminished the interaction of fibroblasts with a mixed substrate of FN, TN, and VN, but had no effect on the adhesion of fibroblasts to a substrate of FN and VN, suggesting that both receptors recognize the complex. Anti-TN68, an antibody that recognizes an epitope in the carboxyl-terminal type III repeats involved in the interaction of TN with both FN and cells, blocked the inductive effect of the FN/TN substrate, whereas anti-TNM1, an antibody that recognizes an epitope in the amino-terminal anti-adhesive region of epidermal growth factor-like repeats, had no effect. These data suggest that transient alteration of the composition of ECM by addition of proteins like TN may regulate the expression of genes involved in cell migration, tissue remodeling, and tissue invasion, in regions of tissue undergoing phenotypic changes.


1990 ◽  
Vol 580 (1 Structure, Mo) ◽  
pp. 355-374 ◽  
Author(s):  
CONSTANCE E. BRINCKERHOFF ◽  
DAVID T. AUBLE

1989 ◽  
Vol 109 (2) ◽  
pp. 877-889 ◽  
Author(s):  
Z Werb ◽  
P M Tremble ◽  
O Behrendtsen ◽  
E Crowley ◽  
C H Damsky

We have investigated the effects of ligation of the fibronectin receptor (FnR) on gene expression in rabbit synovial fibroblasts. Monoclonal antibodies to the FnR that block initial adhesion of fibroblasts to fibronectin induced the expression of genes encoding the secreted extracellular matrix-degrading metalloproteinases collagenase and stromelysin. That induction was a direct consequence of interaction with the FnR was shown by the accumulation of mRNA for stromelysin and collagenase. Monoclonal antibodies to several other membrane glycoprotein receptors had no effect on metalloproteinase gene expression. Less than 2 h of treatment of the fibroblasts with anti-FnR in solution was sufficient to trigger the change in gene expression, and induction was blocked by dexamethasone. Unlike other inducers of metalloproteinase expression, including phorbol diesters and growth factors, addition of the anti-FnR in solution to cells adherent to serum-derived adhesion proteins or collagen produced no detectable change in cell shape or actin microfilament organization. Inductive effects were potentiated by cross-linking of the ligand. Fab fragments of anti-FnR were ineffective unless cross-linked or immobilized on the substrate. Adhesion of fibroblasts to native fibronectin did not induce metallo-proteinases. However, adhesion to covalently immobilized peptides containing the arg-gly-asp sequence that were derived from fibronectin, varying in size from hexapeptides up to 120 kD, induced collagenase and stromelysin gene expression. This suggests that degradation products of fibronectin are the natural inductive ligands for the FnR. These data demonstrate that signals leading to changes in gene expression are transduced by the FnR, a member of the integrin family of extracellular matrix receptors. The signaling of changes in gene expression by the FnR is distinct from signaling involving cell shape and actin cytoarchitecture. At least two distinct signals are generated: the binding of fibronectin-derived fragments and adhesion-blocking antibodies to the FnR triggers events different from those triggered by binding of the native fibronectin ligand. Because the genes regulated by this integrin are for enzymes that degrade the extracellular matrix, these results suggest that information transduced by the binding of various ligands to integrins may orchestrate the expression of genes regulating cell behavior in the extracellular environment.


1984 ◽  
Vol 98 (5) ◽  
pp. 1662-1671 ◽  
Author(s):  
J Aggeler ◽  
S M Frisch ◽  
Z Werb

Induction of the neutral proteinase, collagenase, is a marker for a specific switch in gene expression observed in rabbit synovial fibroblasts. A variety of agents, including 12-O-tetradecanoylphorbol-13-acetate, cytochalasins B and D, trypsin, chymotrypsin, poly(2-hydroxyethylmethacrylate), and trifluoperazine induced this change in gene expression. Induction of collagenase by these agents was always correlated with a marked alteration in cell morphology, although the cells remained adherent to the culture dishes. The amount of collagenase induced was positively correlated with the degree of shape change produced by a given concentration and, to some extent, with the duration of treatment. Altered cell morphology was required only during the first few hours of treatment with inducing agents; after this time collagenase synthesis continued for up to 6 d even when agents were removed and normal flattened cell morphology was regained. All agents that altered cell morphology also produced a characteristic switch in protein secretion phenotype, characterized by the induction of procollagenase (Mr 53,000 and 57,000) and a neutral metalloproteinase (Mr 51,000), which accounted for approximately 25% and 15% of the protein secreted, respectively. Secretion of another neutral proteinase, plasminogen activator, did not correlate with increased collagenase secretion. In contrast, synthesis and secretion of a number of other polypeptides, including the extracellular matrix proteins, collagen and fibronectin, were concomitantly decreased. That changes in cell shape correlated with a program of gene expression manifested by both degradation and synthesis of extracellular macromolecules may have broad implications in development, repair, and pathologic conditions.


1988 ◽  
Vol 263 (31) ◽  
pp. 16334-16340
Author(s):  
H C Schröder ◽  
Y Kuchino ◽  
M Gramzow ◽  
B Kurelec ◽  
U Friese ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Matthew Mannarino ◽  
Hosni Cherif ◽  
Li Li ◽  
Kai Sheng ◽  
Oded Rabau ◽  
...  

Abstract Background There is an increased level of senescent cells and toll-like teceptor-1, -2, -4, and -6 (TLR) expression in degenerating intervertebral discs (IVDs) from back pain patients. However, it is currently not known if the increase in expression of TLRs is related to the senescent cells or if it is a more general increase on all cells. It is also not known if TLR activation in IVD cells will induce cell senescence. Methods Cells from non-degenerate human IVD were obtained from spine donors and cells from degenerate IVDs came from patients undergoing surgery for low back pain. Gene expression of TLR-1,2,4,6, senescence and senescence-associated secretory phenotype (SASP) markers was evaluated by RT-qPCR in isolated cells. Matrix synthesis was verified with safranin-O staining and Dimethyl-Methylene Blue Assay (DMMB) confirmed proteoglycan content. Protein expression of p16INK4a, SASP factors, and TLR-2 was evaluated by immunocytochemistry (ICC) and/or by enzyme-linked immunosorbent assay (ELISA). Results An increase in senescent cells was found following 48-h induction with a TLR-2/6 agonist in cells from both non-degenerate and degenerating human IVDs. Higher levels of SASP factors, TLR-2 gene expression, and protein expression were found following 48-h induction with TLR-2/6 agonist. Treatment with o-vanillin reduced the number of senescent cells, and increased matrix synthesis in IVD cells from back pain patients. Treatment with o-vanillin after induction with TLR-2/6 agonist reduced gene and protein expression of SASP factors and TLR-2. Co-localized staining of p16INK4a and TLR-2 demonstrated that senescent cells have a high TLR-2 expression. Conclusions Taken together our data demonstrate that activation of TLR-2/6 induce senescence and increase TLR-2 and SASP expression in cells from non-degenerate IVDs of organ donors without degeneration and back pain and in cells from degenerating human IVD of patients with disc degeneration and back pain. The senescent cells showed high TLR-2 expression suggesting a link between TLR activation and cell senescence in human IVD cells. The reduction in senescence, SASP, and TLR-2 expression suggest o-vanillin as a potential disease-modifying drug for patients with disc degeneration and back pain.


Sign in / Sign up

Export Citation Format

Share Document