scholarly journals A Mouse Cytoplasmic Exoribonuclease (mXRN1p) with Preference for G4 Tetraplex Substrates

1997 ◽  
Vol 136 (4) ◽  
pp. 761-773 ◽  
Author(s):  
Vladimir I. Bashkirov ◽  
Harry Scherthan ◽  
Jachen A. Solinger ◽  
Jean-Marie Buerstedde ◽  
Wolf-Dietrich Heyer

Exoribonucleases are important enzymes for the turnover of cellular RNA species. We have isolated the first mammalian cDNA from mouse demonstrated to encode a 5′–3′ exoribonuclease. The structural conservation of the predicted protein and complementation data in Saccharomyces cerevisiae suggest a role in cytoplasmic mRNA turnover and pre-rRNA processing similar to that of the major cytoplasmic exoribonuclease Xrn1p in yeast. Therefore, a key component of the mRNA decay system in S. cerevisiae has been conserved in evolution from yeasts to mammals. The purified mouse protein (mXRN1p) exhibited a novel substrate preference for G4 RNA tetraplex–containing substrates demonstrated in binding and hydrolysis experiments. mXRN1p is the first RNA turnover function that has been localized in the cytoplasm of mammalian cells. mXRN1p was distributed in small granules and was highly enriched in discrete, prominent foci. The specificity of mXRN1p suggests that RNAs containing G4 tetraplex structures may occur in vivo and may have a role in RNA turnover.

2001 ◽  
Vol 21 (20) ◽  
pp. 6960-6971 ◽  
Author(s):  
Nianhua Xu ◽  
Chyi-Ying A. Chen ◽  
Ann-Bin Shyu

ABSTRACT An important emerging theme is that heterogeneous nuclear ribonucleoproteins (hnRNPs) not only function in the nucleus but also control the fates of mRNAs in the cytoplasm. Here, we show that hnRNP D plays a versatile role in cytoplasmic mRNA turnover by functioning as a negative regulator in an isoform-specific and cell-type-dependent manner. We found that hnRNP D discriminates among the three classes of AU-rich elements (AREs), most effectively blocking rapid decay directed by class II AREs found in mRNAs encoding cytokines. Our experiments identified the overlapping AUUUA motifs, one critical characteristic of class II AREs, to be the key feature recognized in vivo by hnRNP D for its negative effect on ARE-mediated mRNA decay. The four hnRNP D isoforms, while differing in their ability to block decay of ARE-containing mRNAs, all potently inhibited mRNA decay directed by another mRNA cis element that shares no sequence similarity with AREs, the purine-rich c-fosprotein-coding region determinant of instability. Further experiments indicated that different mechanisms underlie the inhibitory effect of hnRNP D on the two distinct mRNA decay pathways. Our study identifies a potential mechanism by which cytoplasmic mRNA turnover can be differentially and selectively regulated by hnRNP D isoforms in mammalian cells. Our results support the notion that hnRNP D serves as a key factor broadly involved in general mRNA decay.


1992 ◽  
Vol 12 (9) ◽  
pp. 4084-4092
Author(s):  
P C McCabe ◽  
H Haubruck ◽  
P Polakis ◽  
F McCormick ◽  
M A Innis

The rap1A gene encodes a 21-kDa, ras-related GTP-binding protein (p21rap1A) of unknown function. A close structural homolog of p21rap1A (65% identity in the amino-terminal two-thirds) is the RSR1 gene product (Rsr1p) of Saccharomyces cerevisiae. Although Rsr1p is not essential for growth, its presence is required for nonrandom selection of bud sites. To assess the similarity of these proteins at the functional level, wild-type and mutant forms of p21rap1A were tested for complementation of activities known to be fulfilled by Rsr1p. Expression of p21rap1A, like multicopy expression of RSR1, suppressed the conditional lethality of a temperature-sensitive cdc24 mutation. Point mutations predicted to affect the localization of p21rap1A or its ability to cycle between GDP and GTP-bound states disrupted suppression of cdc24ts, while other mutations in the 61-65 loop region improved suppression. Expression of p21rap1A could not, however, suppress the random budding phenotype of rsr1 cells. p21rap1A also apparently interfered with the normal activity of Rsrlp, causing random budding in diploid wild-type cells, suggesting an inability of p21rap1A to interact appropriately with Rsr1p regulatory proteins. Consistent with this hypothesis, we found an Rsr1p-specific GTPase-activating protein (GAP) activity in yeast membranes which was not active toward p21rap1A, indicating that p21rap1A may be predominantly GTP bound in yeast cells. Coexpression of human Rap1-specific GAP suppressed the random budding due to expression of p21rap1A or its derivatives, including Rap1AVal-12. Although Rap1-specific GAP stimulated the GTPase of Rsr1p in vitro, it did not dominantly interfere with Rsr1p function in vivo. A chimera consisting of Rap1A1-165::Rsr1p166-272 did not exhibit normal Rsr1p function in the budding pathway. These results indicated that p21rap1A and Rsr1p share at least partial functional homology, which may have implications for p21rap1A function in mammalian cells.


1995 ◽  
Vol 15 (7) ◽  
pp. 3487-3495 ◽  
Author(s):  
M P Draper ◽  
C Salvadore ◽  
C L Denis

The CCR4 protein from Saccharomyces cerevisiae is a component of a multisubunit complex that is required for the regulation of a number of genes in yeast cells. We report here the identification of a mouse protein (mCAF1 [mouse CCR4-associated factor 1]) which is capable of interacting with and binding to the yeast CCR4 protein. The mCAF1 protein was shown to have significant similarity to proteins from humans, Caenorhabditis elegans, Arabidopsis thaliana, and S. cerevisiae. The yeast gene (yCAF1) had been previously cloned as the POP2 gene, which is required for expression of several genes. Both yCAF1 (POP2) and the C. elegans homolog of CAF1 were shown to genetically interact with CCR4 in vivo, and yCAF1 (POP2) physically associated with CCR4. Disruption of the CAF1 (POP2) gene in yeast cells gave phenotypes and defects in transcription similar to those observed with disruptions of CCR4, including the ability to suppress spt10-enhanced ADH2 expression. In addition, yCAF1 (POP2) when fused to LexA was capable of activating transcription. mCAF1 could also activate transcription when fused to LexA and could functionally substitute for yCAF1 in allowing ADH2 expression in an spt10 mutant background. These data imply that CAF1 is a component of the CCR4 protein complex and that this complex has retained evolutionarily conserved functions important to eukaryotic transcription.


2004 ◽  
Vol 165 (1) ◽  
pp. 31-40 ◽  
Author(s):  
Nicolas Cougot ◽  
Sylvie Babajko ◽  
Bertrand Séraphin

Understanding gene expression control requires defining the molecular and cellular basis of mRNA turnover. We have previously shown that the human decapping factors hDcp2 and hDcp1a are concentrated in specific cytoplasmic structures. Here, we show that hCcr4, hDcp1b, hLsm, and rck/p54 proteins related to 5′–3′ mRNA decay also localize to these structures, whereas DcpS, which is involved in cap nucleotide catabolism, is nuclear. Functional analysis using fluorescence resonance energy transfer revealed that hDcp1a and hDcp2 interact in vivo in these structures that were shown to differ from the previously described stress granules. Our data indicate that these new structures are dynamic, as they disappear when mRNA breakdown is abolished by treatment with inhibitors. Accumulation of poly(A)+ RNA in these structures, after RNAi-mediated inactivation of the Xrn1 exonuclease, demonstrates that they represent active mRNA decay sites. The occurrence of 5′–3′ mRNA decay in specific subcellular locations in human cells suggests that the cytoplasm of eukaryotic cells may be more organized than previously anticipated.


2005 ◽  
Vol 280 (23) ◽  
pp. 22406-22417 ◽  
Author(s):  
Elizabeth J. Fialcowitz ◽  
Brandy Y. Brewer ◽  
Bridget P. Keenan ◽  
Gerald M. Wilson

In mammals, rapid mRNA turnover directed by AU-rich elements (AREs) is mediated by selective association of cellular ARE-binding proteins. These trans-acting factors display overlapping RNA substrate specificities and may act to either stabilize or destabilize targeted transcripts; however, the mechanistic features of AREs that promote preferential binding of one trans-factor over another are not well understood. Here, we describe a hairpin-like structure adopted by the ARE from tumor necrosis factor α (TNFα) mRNA that modulates its affinity for selected ARE-binding proteins. In particular, association of the mRNA-destabilizing factor p37AUF1 was strongly inhibited by adoption of the higher order ARE structure, whereas binding of the inducible heat shock protein Hsp70 was less severely compromised. By contrast, association of the mRNA-stabilizing protein HuR was only minimally affected by changes in ARE folding. Consistent with the inverse relationship between p37AUF1 binding affinity and the stability of ARE folding, mutations that stabilized the ARE hairpin also inhibited its ability to direct rapid mRNA turnover in transfected cells. Finally, phylogenetic analyses and structural modeling indicate that TNFα mRNA sequences flanking the ARE are highly conserved and may stabilize the hairpin fold in vivo. Taken together, these data suggest that local higher order structures involving AREs may function as potent regulators of mRNA turnover in mammalian cells by modulating trans-factor binding selectivity.


2004 ◽  
Vol 24 (17) ◽  
pp. 7483-7490 ◽  
Author(s):  
Andrew Grimson ◽  
Sean O'Connor ◽  
Carrie Loushin Newman ◽  
Philip Anderson

ABSTRACT Eukaryotic messenger RNAs containing premature stop codons are selectively and rapidly degraded, a phenomenon termed nonsense-mediated mRNA decay (NMD). Previous studies with both Caenohabditis elegans and mammalian cells indicate that SMG-2/human UPF1, a central regulator of NMD, is phosphorylated in an SMG-1-dependent manner. We report here that smg-1, which is required for NMD in C. elegans, encodes a protein kinase of the phosphatidylinositol kinase superfamily of protein kinases. We identify null alleles of smg-1 and demonstrate that SMG-1 kinase activity is required in vivo for NMD and in vitro for SMG-2 phosphorylation. SMG-1 and SMG-2 coimmunoprecipitate from crude extracts, and this interaction is maintained in smg-3 and smg-4 mutants, both of which are required for SMG-2 phosphorylation in vivo and in vitro. SMG-2 is located diffusely through the cytoplasm, and its location is unaltered in mutants that disrupt the cycle of SMG-2 phosphorylation. We discuss the role of SMG-2 phosphorylation in NMD.


1993 ◽  
Vol 13 (12) ◽  
pp. 7935-7941 ◽  
Author(s):  
M E Schmitt ◽  
D A Clayton

RNase MRP is a site-specific ribonucleoprotein endoribonuclease that cleaves RNA from the mitochondrial origin of replication in a manner consistent with a role in priming leading-strand DNA synthesis. Despite the fact that the only known RNA substrate for this enzyme is complementary to mitochondrial DNA, the majority of the RNase MRP activity in a cell is found in the nucleus. The recent characterization of this activity in Saccharomyces cerevisiae and subsequent cloning of the gene coding for the RNA subunit of the yeast enzyme have enabled a genetic approach to the identification of a nuclear role for this ribonuclease. Since the gene for the RNA component of RNase MRP, NME1, is essential in yeast cells and RNase MRP in mammalian cells appears to be localized to nucleoli within the nucleus, we utilized both regulated expression and temperature-conditional mutations of NME1 to assay for a possible effect on rRNA processing. Depletion of the RNA component of the enzyme was accomplished by using the glucose-repressed GAL1 promoter. Shortly after the shift to glucose, the RNA component of the enzyme was found to be depleted severely, and rRNA processing was found to be normal at all sites except the B1 processing site. The B1 site, at the 5' end of the mature 5.8S rRNA, is actually composed of two cleavage sites 7 nucleotides apart. This cleavage normally generates two species of 5.8S rRNA at a ratio of 10:1 (small to large) in most eukaryotes. After RNase MRP depletion, yeast cells were found to have almost exclusively the larger species of 5.8S rRNA. In addition, an aberrant 309-nucleotide precursor that stretched from the A2 to E processing sites of rRNA accumulated in these cells. Temperature-conditional mutations in the RNase MRP RNA gene gave an identical phenotype.Translation in yeast cells depleted of the smaller 5.8S rRNA was found to remain robust, suggesting a possible function for two 5.8S rRNAs in the regulated translation of select messages. These results are consistent with RNase MRP playing a role in a late step of rRNA processing. The data also indicate a requirement for having the smaller form of 5.8S rRNA, and they argue for processing at the B1 position being composed of two separate cleavage events catalyzed by two different activities.


1994 ◽  
Vol 124 (3) ◽  
pp. 351-363 ◽  
Author(s):  
KW Cunningham ◽  
GR Fink

Ca2+ ATPases deplete the cytosol of Ca2+ ions and are crucial to cellular Ca2+ homeostasis. The PMC1 gene of Saccharomyces cerevisiae encodes a vacuole membrane protein that is 40% identical to the plasma membrane Ca2+ ATPases (PMCAs) of mammalian cells. Mutants lacking PMC1 grow well in standard media, but sequester Ca2+ into the vacuole at 20% of the wild-type levels. pmc1 null mutants fail to grow in media containing high levels of Ca2+, suggesting a role of PMC1 in Ca2+ tolerance. The growth inhibitory effect of added Ca2+ requires activation of calcineurin, a Ca2+ and calmodulin-dependent protein phosphatase. Mutations in calcineurin A or B subunits or the inhibitory compounds FK506 and cyclosporin A restore growth of pmc1 mutants in high Ca2+ media. Also, growth is restored by recessive mutations that inactivate the high-affinity Ca(2+)-binding sites in calmodulin. This mutant calmodulin has apparently lost the ability to activate calcineurin in vivo. These results suggest that activation of calcineurin by Ca2+ and calmodulin can negatively affect yeast growth. A second Ca2+ ATPase homolog encoded by the PMR1 gene acts together with PMC1 to prevent lethal activation of calcineurin even in standard (low Ca2+) conditions. We propose that these Ca2+ ATPase homologs are essential in yeast to deplete the cytosol of Ca2+ ions which, at elevated concentrations, inhibits yeast growth through inappropriate activation of calcineurin.


2007 ◽  
Vol 27 (17) ◽  
pp. 6243-6253 ◽  
Author(s):  
Gang Yao ◽  
Yueh-Chin Chiang ◽  
Chongxu Zhang ◽  
Darren J. Lee ◽  
Thomas M. Laue ◽  
...  

ABSTRACT The mRNA deadenylation process, catalyzed by the CCR4 deadenylase, is known to be the major factor controlling mRNA decay rates in Saccharomyces cerevisiae. We have identified the proline-rich region and RRM1 domains of poly(A) binding protein (PAB1) as necessary for CCR4 deadenylation. Deletion of either of these regions but not other regions of PAB1 significantly reduced PAB1-PAB1 protein interactions, suggesting that PAB1 oligomerization is a required step for deadenylation. Moreover, defects in these two regions inhibited the formation of a novel, circular monomeric PAB1 species that forms in the absence of poly(A). Removal of the PAB1 RRM3 domain, which promoted PAB1 oligomerization and circularization, correspondingly accelerated CCR4 deadenylation. Circular PAB1 was unable to bind poly(A), and PAB1 multimers were severely deficient or unable to bind poly(A), implicating the PAB1 RNA binding surface as critical in making contacts that allow PAB1 self-association. These results support the model that the control of CCR4 deadenylation in vivo occurs in part through the removal of PAB1 from the poly(A) tail following its self-association into multimers and/or a circular species. Known alterations in the P domains of different PAB proteins and factors and conditions that affect PAB1 self-association would, therefore, be expected to be critical to controlling mRNA turnover in the cell.


1992 ◽  
Vol 3 (8) ◽  
pp. 895-911 ◽  
Author(s):  
S C Ogg ◽  
M A Poritz ◽  
P Walter

In mammalian cells, the signal recognition particle (SRP) receptor is required for the targeting of nascent secretory proteins to the endoplasmic reticulum (ER) membrane. We have identified the Saccharomyces cerevisiae homologue of the alpha-subunit of the SRP receptor (SR alpha) and characterized its function in vivo. S. cerevisiae SR alpha is a 69-kDa peripheral membrane protein that is 32% identical (54% chemically similar) to its mammalian homologue and, like mammalian SR alpha, is predicted to contain a GTP binding domain. Yeast cells that contain the SR alpha gene (SRP101) under control of the GAL1 promoter show impaired translocation of soluble and membrane proteins across the ER membrane after depletion of SR alpha. The degree of the translocation defect varies for different proteins. The defects are similar to those observed in SRP deficient cells. Disruption of the SRP101 gene results in an approximately sixfold reduction in the growth rate of the cells. Disruption of the gene encoding SRP RNA (SCR1) or both SCR1 and SRP101 resulted in an indistinguishable growth phenotype, indicating that SRP receptor and SRP function in the same pathway. Taken together, these results suggest that the components and the mechanism of the SRP-dependent protein targeting pathway are evolutionarily conserved yet not essential for cell growth. Surprisingly, cells that are grown for a prolonged time in the absence of SRP or SRP receptor no longer show pronounced protein translocation defects. This adaptation is a physiological process and is not due to the accumulation of a suppressor mutation. The degree of this adaptation is strain dependent.


Sign in / Sign up

Export Citation Format

Share Document