scholarly journals Inhibition of Caspases Inhibits the Release of Apoptotic Bodies: Bcl-2 Inhibits the Initiation of Formation of Apoptotic Bodies in Chemotherapeutic Agent-induced Apoptosis

1999 ◽  
Vol 145 (1) ◽  
pp. 99-108 ◽  
Author(s):  
Jiandi Zhang ◽  
Mary C. Reedy ◽  
Yusuf A. Hannun ◽  
Lina M. Obeid

During apoptosis, the cell actively dismantles itself and reduces cell size by the formation and pinching off of portions of cytoplasm and nucleus as “apoptotic bodies.” We have combined our previously established quantitative assay relating the amount of release of [3H]-membrane lipid to the degree of apoptosis with electron microscopy (EM) at a series of timepoints to study apoptosis of lymphoid cells exposed to vincristine or etoposide. We find that the [3H]-membrane lipid release assay correlates well with EM studies showing the formation and release of apoptotic bodies and cell death, and both processes are regulated in parallel by inducers or inhibitors of apoptosis. Overexpression of Bcl-2 or inhibition of caspases by DEVD inhibited equally well the activation of caspases as indicated by PARP cleavage. They also inhibited [3H]-membrane lipid release and release of apoptotic bodies. EM showed that cells overexpressing Bcl-2 displayed near-normal morphology and viability in response to vincristine or etoposide. In contrast, DEVD did not prevent cell death. Although DEVD inhibited the chromatin condensation, PARP cleavage, release of apoptotic bodies, and release of labeled lipid, DEVD-treated cells showed accumulation of heterogeneous vesicles trapped in the condensed cytoplasm. These results suggest that inhibition of caspases arrested the maturation and release of apoptotic bodies. Our results also imply that Bcl-2 regulates processes in addition to caspase activation.

2001 ◽  
Vol 29 (3) ◽  
pp. 243-249 ◽  
Author(s):  
Petr Mlejnek

The role of caspase proteases in carbonyl cyanide m-chlorophenylhydrazone (CCCP)-induced apoptosis of human promyelocytic HL-60 cells was examined. Treatment of HL-60 cells with micromolar concentrations of CCCP resulted in cell death, with typical apoptotic features such as chromatin condensation, formation of apoptotic bodies, nucleosomal fragmentation of DNA and a distinct increase in caspase-3 activity. The results, however, indicated that full caspase-3 inhibition by the selective inhibitor N-benzyloxycarbonyl-Asp-Glu-Val-Asp fluoromethyl ketone (Z-DEVD-FMK) did not prevent cell death, nor did it affect the manifestation of apoptotic hallmarks, including apoptotic bodies formation and nucleosomal DNA fragmentation. The only distinct effect that Z-DEVD-FMK exhibited was to retard the disruption of the plasma membrane. We therefore assume that caspase-3 activity itself is not essential for the manifestation of apoptotic features mentioned above. Similarly, the pan-specific caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD-FMK) did not prevent cell death. On the contrary, Z-VAD-FMK completely prevented DNA cleavage and apoptotic body formation, but it failed to completely counteract chromatin condensation. Thus, in the presence of Z-VAD-FMK, application of CCCP concentrations that otherwise induced apoptosis, resulted in the appearance of two morphologically different groups of dead cells with intact DNA. The first group included cells with necrotic-like nuclear morphology, and therefore could be taken as being “truly” necrotic in nature, because they had intact DNA. The cells of the second group formed small single-spherical nuclei with condensed chromatin. In spite of having intact DNA, they could not be taken as “truly” necrotic cells. It is evident that in the experimental system, caspase proteases play an essential role in the formation of apoptotic bodies and in the cleavage of nucleosomal DNA, but not in the condensation of chromatin. Therefore, it is likely that the choice between cell death modalities is not solely a matter of the caspase proteases present.


1999 ◽  
Vol 112 (11) ◽  
pp. 1755-1760
Author(s):  
R.S. Benson ◽  
C. Dive ◽  
A.J. Watson

The role of intracellular acidification in the execution phase of apoptosis is not well understood. Here we examine the effect of Bcl-2 over-expression on intracellular acidification occurring during apoptosis. We found, that in CEM cells, neither DEX nor VP16-induced apoptosis lead to a significant change in intracellular pH (pHi). Furthermore, we found that shifting pHi away from physiological values was unable to induce chromatin condensation or poly(ADP-ribose) polymerase (PARP) cleavage in the presence of Bcl-2 over-expression. However, it was found that maximum chromatin condensation and PARP cleavage occurred at near physiological pHi values. Taken together these data suggest that intracellular acidification does not trigger the effector phase of CEM apoptosis.


2001 ◽  
Vol 280 (1) ◽  
pp. L10-L17 ◽  
Author(s):  
Han-Ming Shen ◽  
Zhuo Zhang ◽  
Qi-Feng Zhang ◽  
Choon-Nam Ong

Alveolar macrophages (AMs) are the principal target cells of silica and occupy a key position in the pathogenesis of silica-related diseases. Silica has been found to induce apoptosis in AMs, whereas its underlying mechanisms involving the initiation and execution of apoptosis are largely unknown. The main objective of the present study was to examine the form of cell death caused by silica and the mechanisms involved. Silica-induced apoptosis in AMs was evaluated by terminal deoxynucleotidyltransferase-mediated dUTP nick end-labeling assay and cell cycle/DNA content analysis. The elevated level of reactive oxygen species (ROS), caspase-9 and caspase-3 activation, and poly(ADP-ribose) polymerase (PARP) cleavage in silica-treated AMs were also determined. The results showed that there was a temporal pattern of apoptotic events in silica-treated AMs, starting with ROS formation and followed by caspase-9 and caspase-3 activation, PARP cleavage, and DNA fragmentation. Silica-induced apoptosis was significantly attenuated by a caspase-3 inhibitor, N-acetyl-Asp-Glu-Val-Asp aldehyde, and ebselen, a potent antioxidant. These findings suggest that apoptosis is an important form of cell death caused by silica exposure in which the elevated ROS level that results from silica exposure may act as an initiator, leading to caspase activation and PARP cleavage to execute the apoptotic process.


Antioxidants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 279 ◽  
Author(s):  
Francesco Di Meo ◽  
Rossana Cuciniello ◽  
Sabrina Margarucci ◽  
Paolo Bergamo ◽  
Orsolina Petillo ◽  
...  

Oxidative stress has been associated to neuronal cell loss in neurodegenerative diseases. Neurons are post-mitotic cells that are very sensitive to oxidative stress—especially considering their limited capacity to be replaced. Therefore, reduction of oxidative stress, and inhibiting apoptosis, will potentially prevent neurodegeneration. In this study, we investigated the neuroprotective effect of Ginkgo biloba extract (EGb 761) against H2O2 induced apoptosis in SK-N-BE neuroblastoma cells. We analysed the molecular signalling pathway involved in the apoptotic cell death. H2O2 induced an increased acetylation of p53 lysine 382, a reduction in mitochondrial membrane potential, an increased BAX/Bcl-2 ratio and consequently increased Poly (ADP-ribose) polymerase (PARP) cleavage. All these effects were blocked by EGb 761 treatment. Thus, EGb 761, acting as intracellular antioxidant, protects neuroblastoma cells against activation of p53 mediated pathway and intrinsic mitochondrial apoptosis. Our results suggest that EGb 761, protecting against oxidative-stress induced apoptotic cell death, could potentially be used as nutraceutical for the prevention and treatment of neurodegenerative diseases.


1994 ◽  
Vol 125 (1) ◽  
pp. 197-203 ◽  
Author(s):  
A C Bayly ◽  
R A Roberts ◽  
C Dive

Suppression of apoptosis has been implicated as a mechanism for the hepatocarcinogenicity of the peroxisome proliferator class of non-genotoxic carcinogens. The ability of the peroxisome proliferator nafenopin to suppress or delay the onset of liver apoptosis was investigated using primary cultures of rat hepatocytes and the Reuber hepatoma cell line FaO. 50 microM nafenopin reversibly maintained the viability of primary rat hepatocyte cultures which otherwise degenerated within 8 d of establishment. The maintenance of viability of hepatocyte monolayers was associated with a significant decrease in the number of cells exhibiting chromatin condensation patterns typical of apoptosis. Apoptosis could be induced in hepatocytes by administration of 5 ng/ml TGF beta 1. Co-addition of 50 microM nafenopin significantly reduced TGF beta 1-induced apoptosis by 50-60%. TGF beta 1 (1-5 ng/ml) also induced apoptosis in the FaO rat hepatoma cell line. Cell death was accompanied by detachment of FaO cells from the monolayer and detached cells exhibited chromatin condensation and non-random DNA fragmentation patterns typical of apoptosis. Co-addition of 50 microM nafenopin to TGF beta 1-treated FaO cultures significantly reduced the number of apoptotic cells detaching from the monolayer at 24 h. In contrast, nafenopin had no significant effect on FaO apoptosis induced by the DNA damaging agents etoposide and hydroxyurea. We conclude that suppression of liver cell death by apoptosis may play a role in the hepatocarcinogenicity of the peroxisome proliferators, although the extent of this protection is dependent on the nature of the apoptotic stimulus.


1997 ◽  
Vol 139 (4) ◽  
pp. 1005-1015 ◽  
Author(s):  
Fumiko Toyoshima ◽  
Tetsuo Moriguchi ◽  
Eisuke Nishida

IL-1β converting enzyme (ICE) family cysteine proteases are subdivided into three groups; ICE-, CPP32-, and Ich-1–like proteases. In Fas-induced apoptosis, activation of ICE-like proteases is followed by activation of CPP32-like proteases which is thought to be essential for execution of the cell death. It was recently reported that two subfamily members of the mitogen-activated protein kinase superfamily, JNK/SAPK and p38, are activated during Fas-induced apoptosis. Here, we have shown that MKK7, but not SEK1/ MKK4, is activated by Fas as an activator for JNK/ SAPK and that MKK6 is a major activator for p38 in Fas signaling. Then, to dissect various cellular responses induced by Fas, we used several peptide inhibitors for ICE family proteases in Fas-treated Jurkat cells and KB cells. While Z-VAD-FK which inhibited almost all the Fas-induced cellular responses blocked the activation of JNK/SAPK and p38, Ac-DEVD-CHO and Z-DEVD-FK, specific inhibitors for CPP32-like proteases, which inhibited the Fas-induced chromatin condensation and DNA fragmentation did not block the activation of JNK/SAPK and p38. Interestingly, these DEVD-type inhibitors did not block the Fas-induced morphological changes (cell shrinkage and surface blebbing), induction of Apo2.7 antigen, or the cell death (as assessed by the dye exclusion ability). These results suggest that the Fas-induced activation of the JNK/SAPK and p38 signaling pathways does not require CPP32-like proteases and that CPP32-like proteases, although essential for apoptotic nuclear events (such as chromatin condensation and DNA fragmentation), are not required for other apoptotic events in the cytoplasm or the cell death itself. Thus, the Fas signaling pathway diverges into multiple, separate processes, each of which may be responsible for part of the apoptotic cellular responses.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3705-3705
Author(s):  
Seongseok Yun ◽  
Nicole D. Vincelette ◽  
Katherine L. B. Knorr ◽  
Luciana L. Almada ◽  
Paula A. Schneider ◽  
...  

Abstract The mammalian target of rapamycin (mTOR), a kinase that regulates proliferation and apoptosis, has been extensively evaluated as a therapeutic target in hematologic malignancies. Rapamycin analogues, which partially inhibit mTOR complex 1 (mTORC1), showed limited anti-tumor activity due to feedback mechanisms involving mTORC2 and incomplete inhibition of mTORC1. Thus, attention has turned to agents targeting both mTOR complexes by binding the mTOR kinase domain. The purpose of this study was to delineate the mechanisms of mTOR dual inhibitor induced apoptosis in human neoplastic lymphoid cells in vitro. MTS assays and propidium iodide staining followed by flow cytometry for subdiploid populations demonstrated that OSI-027 and MLN0128 inhibited cell proliferation and induced apoptosis in a wide range of lymphoid cell lines including Jurkat, Nalm-6, Molt-4, and SeAX. Raptor and Rictor knockdown in Jurkat and Nalm-6 increased cell death, suggesting both mTOR complexes play a role in apoptosis. 4EBP1 phosphorylation was inhibited by mTOR dual inhibitors, but not by rapamycin. Expression of 4EBP1 T37A/T46A and 4EBP1 T37A/T46A/S65A/T70A, which mimic dephosphorylated 4EBP1, increased Puma mRNA and protein levels as well as apoptosis. Moreover, 4EBP1 knockdown abrogated mTOR dual inhibitor induced Puma upregulation and cell death, further supporting the role of 4EBP1 dephosphorylation in mTORC1 dependent apoptosis. In accord with the known dependence of c-Myc translation on the eIF4E/eIF4G complex, we also observed c-Myc downregulation after treatment with OSI-027, MLN0128 and 4EGI-1, but not rapamycin. Puma induction mirrored c-Myc downregulation under a variety of conditions, including expression of nonphosphorylatable 4EBP1 in parental Jurkat cells or wt 4EBP1 in 4EBP1 deficient cells. Furthermore, c-Myc knockdown induced Puma mRNA and protein as well as increased apoptosis. Collectively, these results support a model in which mTORC1 inhibition, acting through 4EBP1, induces Puma upregulation and apoptosis through c-Myc downregulation. In order to assess the parallel mTORC2-dependent Bim-mediated apoptotic mechanism, we utilized reporter assays and RNAseq experiments. OSI-027-induced Bim promoter activity decreased markedly when the nucleotides -29 to -18 were removed, suggesting that this response element is critical for OSI-027-induced promoter activation. In silico analysis identified eight transcription factors, including SP1, Egr-1, and Myb, that potentially bind this 12-bp region. In RNAseq experiments, we detected a 9-fold increase in Egr-1. Egr-1 upregulation was confirmed by qRT-PCR and immunoblotting after dual inhibitors treatment or Rictor knockdown. Moreover, dominant negative Egr-1 or Egr-1 knockdown diminished dual inhibitor-induced Bim promoter activation and Bim upregulation. Chromatin immunoprecipitation assays demonstrated that OSI-027 enhances binding of Egr-1 to a region of the Bim promoter including bp -29 to -18, further confirming that Egr-1 functions as a direct transcriptional activator for Bim upon mTOR dual inhibitor treatment. NFκB is a known transcription factor for Egr-1 and we observed increased p65 in the nucleus and increased NFκB transcriptional activity after dual inhibitor treatment. Overexpression of S32A/S36A IκB impaired the ability of dual inhibitors to induce NFκB transcriptional activation, Egr-1 mRNA and protein, Bim promoter activation and Bim mRNA and protein upregulation. Collectively, these results suggest that mTORC2 inhibition induces Bim upregulation and apoptosis through NFκB and Egr-1 transactivation. When fresh clinical ALL isolates were exposed to OSI-027 or MLN0128 ex vivo, inhibition of 4EBP1 phosphorylation along with upregulation of Egr-1 and Bim and/or c-Myc downregulation accompanied by Puma induction occurred, indicating that the pathways identified in ALL cell lines can also potentially be engaged in clinical ALLs. These observations not only provide new insight into the survival roles of mTOR in lymphoid malignancies, but also identify alterations that potentially modulate the action of mTOR dual inhibitors. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2468-2468
Author(s):  
Kenji Ishitsuka ◽  
Teru Hideshima ◽  
Makoto Hamasaki ◽  
Raje Noopur ◽  
Kumar Shaji ◽  
...  

Abstract Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme required for the de novo synthesis of guanine nucleotides from IMP. VX-944 (Vertex Pharmaceuticals, Cambridge, MA) is a small molecule, selective, uncompetitive novel inhibitor directed against human IMPDH enzyme. IMPDH inhibitors have been demonstrated to induce growth arrest, and extensively investigated as immunosuppressants. Here we show that VX-944 inhibits growth of human multiple myeloma (MM) cell lines, including those resistant to conventional agents, via induction of apoptosis and S phase arrest in vitro. Interleukin-6, insulin-like growth factor-1, or co-culture with bone marrow stromal cells (BMSCs), do not protect against VX-944-induced MM cell growth inhibition. We next delineated the molecular mechanism of VX-944-induced MM cell death in the MM.1S human MM cell line. VX-944 induced apoptosis in MM.1S cells, confirmed by PARP cleavage as well as flow cytometric detection of the mitochondrial membrane protein 7A6 and TdT-mediated dUTP nick-end labelling (TUNEL) positive cells, without significant cleavage of caspases 3, 8 and 9. While the pan-caspase inhibitor z-VAD-fmk did not inhibit the VX-944-induced apoptosis and cell death suggesting that VX-944 triggers apoptosis in MM1.S cells primarily via caspase-independent pathway. Importantly, VX-944 augments the cytotoxicity of doxorubicin, melphalan and bortezomib, all of which activate caspases in MM cells and induce apoptosis, even in the presence of BMSCs. Taken together, our data demonstrate non-caspase-dependent apoptotic pathway triggered by VX-944 thereby providing a rationale to enhance MM cell cytotoxicity by combining this agent with conventional and/or novel agents which trigger caspase activation. Our ongoing studies are delineating the mechanisms whereby VX-944 induces MM cell apoptosis.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1625-1625 ◽  
Author(s):  
Aine McCarthy ◽  
Vincent Yeung ◽  
John G. Gribben ◽  
Li Jia

Abstract Abstract 1625 Diffuse large B-cell lymphoma (DLBCL) is characterised by overexpression of the anti-apoptotic protein Bcl-2. It has been recently observed that Bcl-2 also inhibits autophagy by binding and sequestering Beclin-1, an essential autophagy protein, but it is unclear whether Bcl-2 inhibits both apoptosis and autophagy in DLBCL cells. We aimed to determine the dual role of Bcl-2 in both apoptosis and autophagy in Bcl-2 positive cell lines (Su-DHL4 and CRL) and Bcl-2 negative cell lines (Su-DHL8 and Su-DHL10) using the BH3 mimetic compound ABT-737. The sensitivity of Bcl-2 positive and Bcl-2 negative cell lines to ABT-737-mediated mitochondrial depolarization (ΔΨmLOW) and cell death (DAPI positive) was assessed by flow cytometry. Treatment of the Bcl-2 positive cell lines Su-DHL4 and CRL with ABT-737 significantly increased (p<0.01) the percentage of both ΔΨmLOW cells, indicating mitochondrial damage as well as DAPI positive cells indicating cell death. Treatment with ABT-737 increased Bax activation and PARP cleavage in Bcl-2 positive cells, indicating that as expected, ABT-737-induced cell death is via apoptosis. ABT-737-induced cell death was not detected in Bcl-2 negative cell lines Su-DHL8 and Su-DHL10, demonstrating that, as expected, the sensitivity of DLBCL cell lines to ABT-737-induced apoptosis is Bcl-2 dependent. Treatment of Bcl-2 positive cells with ABT-737 also resulted in a decreased cellular co-localisation of Bcl-2 and Beclin-1 as detected by immunofluorescent staining. Degradation of p62 and LC3-II, selective substrates of autophagy, was detected by Western blotting in Bcl-2 positive but not in Bcl-2 negative cell lines after treatment with ABT-737 for 15 hours. LC3-I is a diffuse cytoplasmic protein which upon activation of autophagy becomes cleaved and lipidated to LC3-II which becomes punctate within cells. Punctuate LC3-II is a widely used marker of active autophagy. ABT-737-induced autophagosome formation was determined at an earlier time point (3 hours after ABT-737 treatment) using immune-fluorescent microscopy. ABT-737 induced increased numbers of larger punctate LC3-II in Bcl-2 positive Su-DHL4 and CRL cell lines but not in Bcl-2 negative cells, indicating that inhibition of Bcl-2 induces autophagy in Bcl-2 positive cells. We then determined whether autophagy affects ABT-737-induced apoptosis by blocking autophagy using an autophagy inhibitor chloroquine (CQ). Co-treatment with ABT-737 and CQ resulted in an increase in the percentage of ΔΨmLOW cells, DAPI positive cells and PARP cleavage compared to cells treated with ABT-737 alone in Bcl-2 positive cell lines. Combined, these results indicate that inhibition of autophagy by chloroquine further sensitises Bcl-2 positive cells to ABT-737-induced apoptosis. In summary, our results indicate that Bcl-2 inhibits autophagy in lymphoma cells by sequestering Beclin-1. Disruption of this interaction by ABT-737 induces autophagy which in turn inhibits apoptosis. Inhibition of autophagy results in increased sensitivity of Bcl-2 positive cells to ABT-737-induced apoptosis, suggesting a role for autophagy inhibitors in lymphoma treatment. Disclosures: No relevant conflicts of interest to declare.


2004 ◽  
Vol 180 (3) ◽  
pp. 479-486 ◽  
Author(s):  
CJ Auernhammer ◽  
F Dorn ◽  
G Vlotides ◽  
S Hengge ◽  
FB Kopp ◽  
...  

The effects of murine oncostatin M (mOSM) are specifically mediated by the heterodimeric oncostatin M receptor (OSMR)/gp130 receptor complex. In the current study we demonstrate that murine adrenocortical Y-1 tumor cells express the OSMR/gp130 complex. Incubation of Y-1 cells with 1 and 10 ng/ml mOSM induces cell death due to specific induction of apoptosis. Western blot analysis of Y-1 cells incubated with mOSM for 24 h revealed caspase-3 cleavage and poly(ADP-ribase) polymerase (PARP) cleavage. In a proliferation assay system, incubation of Y-1 cells with 0.01, 0.1, 1 and 10 ng/ml mOSM for 24 h resulted in a decrease in cell numbers to 99+/-2%, 84+/-9%, 50+/-7% and 43+/-5% respectively of untreated control (defined as 100%). Pretreatment of Y-1 cells with the Jak2 inhibitor AG490 (100 microM) rescued Y-1 cells from OSM-induced (10 ng/ml) cell death. Similarly, pretreatment of Y-1 cells with the general caspase inhibitor Z-VAD-FMK (42 microM) rescued Y-1 cells from OSM-induced (10 ng/ml) cell death. In summary, we show that adrenocortical Y-1 tumor cells express the OSMR/gp130 complex and that mOSM induces the Jak-STAT signaling cascade in these cells. Murine OSM in a dose-dependent manner induces apoptosis in adrenocortical Y-1 tumor cells. Apoptosis was demonstrated by caspase-3 cleavage and PARP cleavage. Rescue of Y-1 cells from mOSM-induced apoptosis by the Jak2 inhibitor, AG490, and the general caspase inhibitor, Z-VAD-FMK, demonstrates Jak activation and subsequent caspase activation to be essential for mOSM-induced apoptosis in adrenocortical Y-1 tumor cells. The putative role of OSM as an immunotherapeutic agent in human adrenocortical cancer remains to be elucidated.


Sign in / Sign up

Export Citation Format

Share Document