scholarly journals THE REPLICATION TIME AND PATTERN OF THE LIVER CELL IN THE GROWING RAT

1963 ◽  
Vol 18 (1) ◽  
pp. 1-12 ◽  
Author(s):  
Joseph Post ◽  
Cheng-Ya Huang ◽  
Joseph Hoffman

Three-week-old male rats of the Wistar strain were given tritiated thymidine, 1 µc/gm body weight, intraperitoneally and were killed at intervals from 0.25 to 72 hours later. Autoradiographs were made from 5 µ sections, stained by the Feulgen method. The replication time and its component intervals were determined from the scoring of the labeling of interphase nuclei as well as of prophase, metaphase, anaphase, and telophase nuclei. Absorption of the intraperitoneally injected label is rapid and is attended by "flash" labeling during interphase. The results show that at any one time about 4 per cent of the liver cells are synthesizing DNA preliminary to cell division. These cells alternate with waves of other cells and it is estimated that about 10 per cent of the liver cell population is engaged in cell duplication. The replication time is about 21.5 hours, and its component intervals occupy the following times: DNA synthesis, 9 hours; post-DNA synthesis gap, 0.50 hour; prophase, 1.3 hours; metaphase, 1.0 hour; anaphase, 0.4 hour; telophase, 0.3 hour; postmitosis gap, 9.0 hours. A group of liver cells has been recorded in at least 3 successive replication cycles.

1964 ◽  
Vol 22 (2) ◽  
pp. 341-350 ◽  
Author(s):  
Joseph Post ◽  
Joseph Hoffman

The replication time and pattern have been investigated in hepatoma cells induced by feeding 3'Me-DAB to male rats for 5 months. With the use of tritiated thymidine as a DNA label along with autoradiography, mitotic nuclear labeling has been studied 0.5 to 72 hours after the administration of the label. The following time intervals have been estimated: replication time, 31 hours; DNA synthesis, 17 hours; G2 plus Mitosis, 2 hours; G1, 12 hours. Only about 8 per cent of the tumor cell (interphase) population is "flash" labeled, following a single dose of 50 µC of H3TDR. This group of cells has been followed through three cycles of division. The repeated rhythmic passage of tumor cells through cell division is similar to that previously reported for normal liver cells in the growing rat. However, tumor cells have longer replication and DNA synthesis times. In addition, the several time intervals studied vary more in the tumor cell population than they do in the growing normal cell population.


1963 ◽  
Vol 16 (1) ◽  
pp. 29-51 ◽  
Author(s):  
Elizabeth D. Hay ◽  
J. P. Revel

In the present investigation, the sites of deoxyribonucleic acid (DNA) synthesis and the fate of labeled deoxyribonucleoprotein (DNP) were studied in autoradiographs of ultrathin sections viewed with the electron microscope. Tritiated thymidine was employed as a label for DNA in the nuclei of proliferating cells of regenerating salamander limbs. In the autoradiographic method reported here, dilute NaOH was used to remove the gelatin of the emulsion after exposure and development. The exposed silver grains are not displaced by this treatment and the resolution of fine structure in the underlying section is greatly improved. Our observations suggest that the DNP component is a meshwork of interconnected filaments 50 to 75 A in diameter, which may be cross-linked to form what Frey-Wyssling would term a "reticular gel." The filamentous DNP meshwork is dispersed throughout the interphase nucleus during DNA synthesis, whereas in chromosomes, which are relatively inert metabolically, the meshwork is denser and is aggregated into compact masses. Dense chromatin centers in interphase nuclei are similar in fine structure to chromosomes and are also inert with respect to DNA synthesis. In the Discussion, the structure of the filamentous meshwork in chromatin is compared with that in chromosomes, and speculations are made as to the functional significance of the variations in DNP fine structure observed.


1963 ◽  
Vol 16 (2) ◽  
pp. 315-322 ◽  
Author(s):  
A. Lima-de-Faria ◽  
J. Reitalu

Tritiated thymidine was added to peripheral blood cultures containing phytohemagglutinin so that DNA synthesis in interphase nuclei of white blood cells in the human male could be studied. After 57 hours in culture, a large heterochromatic body with a central position is seen in unlabeled Feulgen-stained nuclei. In labeled nuclei in which DNA synthesis was taking place in both the eu- and heterochromatin at the time the thymidine became available, the heterochromatin shows a higher number of silver grains per unit area, accompanied by a stronger Feulgen reaction, an indication of its higher DNA content. The time of DNA synthesis in the heterochromatin blocks is different from that in the surrounding euchromatin. The large heterochromatic block is composed of chromosome segments gathered together around the nucleolus but it is not part of this organelle. In preparations stained with azure A and acid fuchsin for demonstrating both the nucleolus and the chromosomes, six distinctly heteropyenotic chromosome segments can be seen associated with the nucleolus. Cells of all size categories were found to incorporate tritiated thymidine. The distinct appearance of autosomal heterochromatin in white blood cells may be the result of the new physiological conditions to which the cells are subjected in the medium containing phytohemagglutinin.


Author(s):  
Robert R. Cardell

Hypophysectomy of the rat renders this animal deficient in the hormones of the anterior pituitary gland, thus causing many primary and secondary hormonal effects on basic liver functions. Biochemical studies of these alterations in the rat liver cell are quite extensive; however, relatively few morphological observations on such cells have been recorded. Because the available biochemical information was derived mostly from disrupted and fractionated liver cells, it seemed desirable to examine the problem with the techniques of electron microscopy in order to see what changes are apparent in the intact liver cell after hypophysectomy. Accordingly, liver cells from rats which had been hypophysectomized 5-120 days before sacrifice were studied. Sham-operated rats served as controls and both hypophysectomized and control rats were fasted 15 hours before sacrifice.


Author(s):  
Agung Biworo ◽  
Dwi Rezki Amalia ◽  
Gratianus Billy Himawan ◽  
Lisda Rizky Amalia ◽  
Valentina Halim ◽  
...  

The objectives of this study were to determine the effect of cadmium (Cd) on glucose metabolism disruption in liver cells homogenate in vitro. The glucose metabolism disruption was analyzed by measuring the level of liver glucose, glycogen and methylglyoxal (MG), and the activity of glucokinase activity. In this experiment, a liver sample was taken from male rats (Rattus novergicus). Samples then homogenized and divided into four groups with; C served as control which contains liver homogenate only; T1 which contains liver homogenate + 0.03 mg/l of cadmium sulphate (CdSO4); T2 which contains liver homogenate + 0.3 mg/l of CdSO4; and T3 which contains liver homogenate + 3 mg/l of CdSO4. After treatment, liver glucose, glycogen, and MG levels, and glucokinase activity were estimated. The activity of liver glucokinase was estimated by measuring the Michaelis-Menten constant (Km) value. The results revealed that Cd exposure could significantly increase glucose and MG levels, the Km value of glucokinase, and decreased the glycogen level in liver cells (P>0.05). These results indicated that Cd exposure induced the disruption of glucose metabolism in the liver.


2020 ◽  
Vol 19 (2) ◽  
pp. 296-303
Author(s):  
Eni Widayati ◽  
Taufiqurrachman Nasihun ◽  
Azizah Hikma Savitri ◽  
Nurina Tyagita

Objective: The effect of Pimpinela alpina Molk (PaM) on decrease in Bax and Caspase-3 protein expression in liver cells apoptosis have been proven. However, the difference result between 7 and 15 days treatment duration of PaM need to be confirmed. This study aimed to confirm that treatment of PaM during 15 days is more effective decreasing Bax and Caspase-3 protein expression in liver cells following UVB irradiation. Methods: In the post test only control group design, 35 Sprague Dawley male rats, 300 gram body weight were divided into two arms, consisting of three groups respectively. First arm comprise Neg-7, PaM7-100, and PaM7-150. Second arm comprise Neg-15, PaM15-100, and PaM15-150. Nor-G was added as normal control neither exposed to UVB nor PaM treatment. In negative group was only radiated to UVB and PaM groups were exposed to UVB and treatment with 100, and 150 mg PaM per oral for 7 and 15 days respectively. At day 8 (first arm) and 16 (second arm), liver organ was taken and Bax and Caspase-3 protein expression assessed by Immunohistochemical staining method. Result: Post Hoc LSD analysis indicated that Bax and Caspase-3 protein expression in PaM15-100 and PaM15-150 was significant lower compared to that of Nor-G, PaM7-100, and PaM7-150, p < 0.05. Conclusion: Ttreatment of PaM with doses 100 and 150 mg for 15 days was better in decreasing Bax and Caspase-3 protein expression of liver cells following UVB irradiation. Bangladesh Journal of Medical Science Vol.19(2) 2020 p.296-303


1968 ◽  
Vol 42 (3) ◽  
pp. 453-463 ◽  
Author(s):  
ANNE McLAREN

SUMMARY Blastocysts were studied on the 5th and 8th day of pregnancy in lactating mice, in the fresh state, flushed from the uterus, in squash preparations and in serial sections. At the earlier period some mitosis was observed. Tritiated thymidine incorporation studies gave some evidence of DNA synthesis on the 5th and 6th days of pregnancy. By the 8th day the blastocysts were longer, contained more cells, and mitosis had ceased. They were located at the anti-mesometrial end of the uterine lumen, closely apposed to the uterine epithelium, and with their long axes parallel to the long axis of the uterine horn. Implantation could be induced, either by the removal of the litter, or by the injection of an appropriate dose of oestrogen on the 5th or 7th (but not the 4th) day of pregnancy. Both treatments were followed by the appearance of W-bodies in the neighbourhood of the blastocysts, the disappearance of the shed zonae, and the appearance of Pontamine Blue reactivity, oedema of the uterine stroma and formation of the primary decidual zone, in that order.


1953 ◽  
Vol 9 (1) ◽  
pp. 45-51 ◽  
Author(s):  
ROSA M. CAMPBELL ◽  
H. W. KOSTERLITZ

1. The protein content of liver cells is almost independent of the size of the animal (mice, cats and previous results on rats, Campbell & Kosterlitz [1949]), and varies with the amount of protein eaten. 2. As has already been shown for rats, the ribonucleic acid ('RNA') content of the liver cells of non-pregnant mice, guinea-pigs and cats varies directly with the protein content of the cells. For a given protein content the mouse and rat have more RNA than the guinea-pig and cat. 3. During pregnancy there is a rise of the deoxyribonucleic acid ('DNA') content of the livers and in the protein content of the liver cells of mice (and rats), but not of guinea-pigs. 4. An excess of RNA over that predicted from the protein content of the liver cell has previously been found for the rat during pregnancy, and ascribed to the action of a placental factor on the maternal liver. A similar excess of RNA has now been observed in the mouse and, to a less extent, in the guinea-pig. It appears to be absent in the cat. 5. Possible causes of some of these species differences are considered.


Development ◽  
1972 ◽  
Vol 28 (1) ◽  
pp. 87-115
Author(s):  
K. Straznicky ◽  
R. M. Gaze

The development of the optic tectum in Xenopus laevis has been studied by the use of autoradiography with tritiated thymidine. The first part of the adult tectum to form is the rostroventral pole; cells in this position undergo their final DNA synthesis between stages 35 and 45 or shortly thereafter. Next, the cells comprising the ventrolateral border of the tectum form. These cells undergo their final DNA synthesis at or shortly after stage 45. Finally the cells comprising the dorsal surface of the adult tectum form, mainly between stages 50–55. This part of the tectum originates from the serial addition of strips of cells medially, which displace the pre-existing tissue laterally and rostrally. The formation of the tectum is virtually complete by stage 58. The tectum in Xenopus thus forms in topographical order from rostroventral to caudo-medial. The distribution of labelled cells, several stages after the time of injection of isotope, indicates that, at any one time, a segment of tectum is forming which runs normal to the tectal surface and includes all layers from the ventricular layer out to the surface. In Xenopus, therefore, the times of origin of tectal cells appear to be related not to cell type or tectal layer but to the topographical position of the cells across the surface of the tectum.


Sign in / Sign up

Export Citation Format

Share Document