scholarly journals The Listeria monocytogenes hemolysin has an acidic pH optimum to compartmentalize activity and prevent damage to infected host cells

2002 ◽  
Vol 156 (6) ◽  
pp. 1029-1038 ◽  
Author(s):  
Ian J. Glomski ◽  
Margaret M. Gedde ◽  
Albert W. Tsang ◽  
Joel A. Swanson ◽  
Daniel A. Portnoy

Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. The pore-forming cholesterol-dependent cytolysin, listeriolysin O (LLO), mediates bacterial escape from vesicles and is ∼10-fold more active at an acidic than neutral pH. By swapping dissimilar residues from a pH-insensitive orthologue, perfringolysin O (PFO), we identified leucine 461 as unique to pathogenic Listeria and responsible for the acidic pH optimum of LLO. Conversion of leucine 461 to the threonine present in PFO increased the hemolytic activity of LLO almost 10-fold at a neutral pH. L. monocytogenes synthesizing LLO L461T, expressed from its endogenous site on the bacterial chromosome, resulted in a 100-fold virulence defect in the mouse listeriosis model. These bacteria escaped from acidic phagosomes and initially grew normally in cells and spread cell to cell, but prematurely permeabilized the host membrane and killed the cell. These data show that the acidic pH optimum of LLO results from an adaptive mutation that acts to limit cytolytic activity to acidic vesicles and prevent damage in the host cytosol, a strategy also used by host cells to compartmentalize lysosomal hydrolases.

2009 ◽  
Vol 77 (7) ◽  
pp. 2612-2623 ◽  
Author(s):  
Francis Alonzo ◽  
Gary C. Port ◽  
Min Cao ◽  
Nancy E. Freitag

ABSTRACT Listeria monocytogenes is an intracellular bacterial pathogen whose virulence depends on the regulated expression of numerous secreted bacterial factors. As for other gram-positive bacteria, many proteins secreted by L. monocytogenes are translocated across the bacterial membrane in an unfolded state to the compartment existing between the membrane and the cell wall. This compartment presents a challenging environment for protein folding due to its high density of negative charge, high concentrations of cations, and low pH. We recently identified PrsA2 as a gene product required for L. monocytogenes virulence. PrsA2 was identified based on its increased secretion by strains containing a mutationally activated form of prfA, the key regulator of L. monocytogenes virulence gene expression. The prsA2 gene product is one of at least two predicted peptidyl-prolyl cis/trans-isomerases encoded by L. monocytogenes; these proteins function as posttranslocation protein chaperones and/or foldases. In this study, we demonstrate that PrsA2 plays a unique and important role in L. monocytogenes pathogenesis by promoting the activity and stability of at least two critical secreted virulence factors: listeriolysin O (LLO) and a broad-specificity phospholipase. Loss of PrsA2 activity severely attenuated virulence in mice and impaired bacterial cell-to-cell spread in host cells. In contrast, mutants lacking prsA1 resembled wild-type bacteria with respect to intracellular growth and cell-to-cell spread as well as virulence in mice. PrsA2 is thus distinct from PrsA1 in its unique requirement for the stability and full activity of L. monocytogenes-secreted factors that contribute to host infection.


Author(s):  
Juan J Quereda ◽  
Camille Morel ◽  
Noelia Lopez-Montero ◽  
Jason Ziveri ◽  
Steven Rolland ◽  
...  

Abstract The bacterial pathogen Listeria monocytogenes invades host cells, ruptures the internalization vacuole, and reaches the cytosol for replication. A high-content small interfering RNA (siRNA) microscopy screen allowed us to identify epithelial cell factors involved in L. monocytogenes vacuolar rupture, including the serine/threonine kinase Taok2. Kinase activity inhibition using a specific drug validated a role for Taok2 in favoring L. monocytogenes cytoplasmic access. Furthermore, we showed that Taok2 recruitment to L. monocytogenes vacuoles requires the presence of pore-forming toxin listeriolysin O. Overall, our study identified the first set of host factors modulating L. monocytogenes vacuolar rupture and cytoplasmic access in epithelial cells.


2003 ◽  
Vol 71 (12) ◽  
pp. 6754-6765 ◽  
Author(s):  
Ian J. Glomski ◽  
Amy L. Decatur ◽  
Daniel A. Portnoy

ABSTRACT Listeria monocytogenes is a facultative intracellular bacterial pathogen that escapes from a phagosome and grows in the host cell cytosol. Escape of the bacterium from the phagosome to the cytosol is mediated by the bacterial pore-forming protein listeriolysin O (LLO). LLO has multiple mechanisms that optimize activity in the phagosome and minimize activity in the host cytosol. Mutants that fail to compartmentalize LLO activity are cytotoxic and have reduced virulence. We sought to determine why cytotoxic bacteria have attenuated virulence in the mouse model of listeriosis. In this study, we constructed a series of strains with mutations in LLO and with various degrees of cytotoxicity. We found that the more cytotoxic the strain in cell culture, the less virulent it was in mice. Induction of neutropenia increased the relative virulence of the cytotoxic strains 100-fold in the spleen and 10-fold in the liver. The virulence defect was partially restored in neutropenic mice by adding gentamicin, an antibiotic that kills extracellular bacteria. Additionally, L. monocytogenes grew more slowly in extracellular fluid (mouse serum) than within tissue culture cells. We concluded that L. monocytogenes controls the cytolytic activity of LLO to maintain its nutritionally rich intracellular niche and avoid extracellular defenses of the host.


2005 ◽  
Vol 73 (9) ◽  
pp. 5789-5798 ◽  
Author(s):  
Xinyan Zhao ◽  
Zhongxia Li ◽  
Baiyan Gu ◽  
Fred R. Frankel

ABSTRACT Listeria monocytogenes is a bacterial pathogen that elicits a strong cellular immune response and thus has potential use as a vaccine vector. An attenuated strain, L. monocytogenes dal dat, produced by deletion of two genes (dal and dat) used for d-alanine synthesis, induces cytotoxic T lymphocytes and protective immunity in mice following infection in the presence of d-alanine. In order to obviate the dependence of L. monocytogenes dal dat on supplemental d-alanine yet retain its attenuation and immunogenicity, we explored mechanisms to allow transient endogenous synthesis of the amino acid. Here, we report on a derivative strain, L. monocytogenes dal dat/pRRR, that expresses a dal gene and synthesizes d-alanine under highly selective conditions. We constructed the suicide plasmid pRRR carrying a dal gene surrounded by two res1 sites and a resolvase gene, tnpR, which acts at the res1 sites. The resolvase gene is regulated by a promoter activated upon exposure to host cell cytosol. L. monocytogenes dal dat/pRRR was thus able to grow in liquid culture and to infect host cells without d-alanine supplementation. However, after infection of these cells, resolvase-mediated excision of the dal gene resulted in strong down-regulation of racemase expression. As a result, this system allowed only transient growth of L. monocytogenes dal dat/pRRR in infected cells and survival in animals for only 2 to 3 days. Nevertheless, mice immunized with L. monocytogenes dal dat/pRRR generated listeriolysin O-specific effector and memory CD8+ T cells and were protected against lethal challenge by wild-type Listeria. This vector may be an attractive vaccine candidate for the induction of protective cellular immune responses.


mBio ◽  
2018 ◽  
Vol 9 (1) ◽  
Author(s):  
Pallab Ghosh ◽  
Elizabeth M. Halvorsen ◽  
Dustin A. Ammendolia ◽  
Nirit Mor-Vaknin ◽  
Mary X. D. O’Riordan ◽  
...  

ABSTRACTListeria monocytogenesis a facultative intracellular bacterial pathogen that is frequently associated with food-borne infection. Of particular concern is the ability ofL. monocytogenesto breach the blood-brain barrier, leading to life-threatening meningitis and encephalitis. The mechanisms used by bacterial pathogens to infect the brain are not fully understood. Here we show thatL. monocytogenesis able to utilize vimentin for invasion of host cells. Vimentin is a type III intermediate filament protein within the cytosol but is also expressed on the host cell surface. We found thatL. monocytogenesinteraction with surface-localized vimentin promoted bacterial uptake. Furthermore, in the absence of vimentin,L. monocytogenescolonization of the brain was severely compromised in mice. TheL. monocytogenesvirulence factor InlF was found to bind vimentin and was necessary for optimal bacterial colonization of the brain. These studies reveal a novel receptor-ligand interaction that enhances infection of the brain byL. monocytogenesand highlights the importance of surface vimentin in host-pathogen interactions.IMPORTANCEListeria monocytogenesis an intracellular bacterial pathogen that is capable of invading numerous host cells during infection.L. monocytogenescan cross the blood-brain barrier, leading to life-threatening meningitis. Here we show that anL. monocytogenessurface protein, InlF, is necessary for optimal colonization of the brain in mice. Furthermore, in the absence of vimentin, a cytosolic intermediate filament protein that is also present on the surface of brain endothelial cells, colonization of the brain was significantly impaired. We further show that InlF binds vimentin to mediate invasion of host cells. This work identifies InlF as a bacterial surface protein with specific relevance for infection of the brain and underscores the significance of host cell surface vimentin interactions in microbial pathogenesis.


2015 ◽  
Vol 83 (5) ◽  
pp. 2175-2184 ◽  
Author(s):  
Gabriel Mitchell ◽  
Liang Ge ◽  
Qiongying Huang ◽  
Chen Chen ◽  
Sara Kianian ◽  
...  

Listeria monocytogenesis a facultative intracellular pathogen that escapes from phagosomes and grows in the cytosol of infected host cells. Most of the determinants that govern its intracellular life cycle are controlled by the transcription factor PrfA, including the pore-forming cytolysin listeriolysin O (LLO), two phospholipases C (PlcA and PlcB), and ActA. We constructed a strain that lacked PrfA but expressed LLO from a PrfA-independent promoter, thereby allowing the bacteria to gain access to the host cytosol. This strain did not grow efficiently in wild-type macrophages but grew normally in macrophages that lacked ATG5, a component of the autophagy LC3 conjugation system. This strain colocalized more with the autophagy marker LC3 (42% ± 7%) at 2 h postinfection, which constituted a 5-fold increase over the colocalization exhibited by the wild-type strain (8% ± 6%). While mutants lacking the PrfA-dependent virulence factor PlcA, PlcB, or ActA grew normally, a double mutant lacking both PlcA and ActA failed to grow in wild-type macrophages and colocalized more with LC3 (38% ± 5%). Coexpression of LLO and PlcA in a PrfA-negative strain was sufficient to restore intracellular growth and decrease the colocalization of the bacteria with LC3. In a cell-free assay, purified PlcA protein blocked LC3 lipidation, a key step in early autophagosome biogenesis, presumably by preventing the formation of phosphatidylinositol 3-phosphate (PI3P). The results of this study showed that avoidance of autophagy byL. monocytogenesprimarily involves PlcA and ActA and that either one of these factors must be present forL. monocytogenesgrowth in macrophages.


Toxins ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 294
Author(s):  
Matthew J. G. Eldridge ◽  
Pascale Cossart ◽  
Mélanie A. Hamon

During infection, the foodborne bacterial pathogen Listeria monocytogenes dynamically influences the gene expression profile of host cells. Infection-induced transcriptional changes are a typical feature of the host-response to bacteria and contribute to the activation of protective genes such as inflammatory cytokines. However, by using specialized virulence factors, bacterial pathogens can target signaling pathways, transcription factors, and epigenetic mechanisms to alter host gene expression, thereby reprogramming the response to infection. Therefore, the transcriptional profile that is established in the host is delicately balanced between antibacterial responses and pathogenesis, where any change in host gene expression might significantly influence the outcome of infection. In this review, we discuss the known transcriptional and epigenetic processes that are engaged during Listeria monocytogenes infection, the virulence factors that can remodel them, and the impact these processes have on the outcome of infection.


2006 ◽  
Vol 75 (1) ◽  
pp. 44-51 ◽  
Author(s):  
P. S. Marie Yeung ◽  
Yoojin Na ◽  
Amanda J. Kreuder ◽  
Hélène Marquis

ABSTRACT Listeria monocytogenes is a bacterial pathogen that multiplies in the cytosol of host cells and spreads directly from cell to cell by using an actin-based mechanism of motility. The broad-range phospholipase C (PC-PLC) of L. monocytogenes contributes to bacterial escape from vacuoles formed upon cell-to-cell spread. PC-PLC is made as an inactive proenzyme whose activation requires cleavage of an N-terminal propeptide. During infection, PC-PLC is activated specifically in acidified vacuoles. To assess the importance of compartmentalizing PC-PLC activity during infection, we created a mutant that makes constitutively active PC-PLC (the plcBΔpro mutant). Results from intracellular growth and cell-to-cell spread assays showed that the plcBΔpro mutant was sensitive to gentamicin, suggesting that unregulated PC-PLC activity causes damage to host cell membranes. This was confirmed by the observation of a twofold increase in staining of live infected cells by a non-membrane-permeant DNA fluorescent dye. However, membrane damage was not sufficient to cause cell lysis and was dependent on bacterial cell-to-cell spread, suggesting that damage was localized to bacterium-containing filopodia. Using an in vivo competitive infection assay, we observed that the plcBΔpro mutant was outcompeted up to 200-fold by the wild-type strain in BALB/c mice. Virulence attenuation was greater when mice were infected orally than when they were infected intravenously, presumably because the plcBΔpro mutant was initially outcompeted in the intestines, reducing the number of mutant bacteria reaching the liver and spleen. Together, these results emphasize the importance for L. monocytogenes virulence of compartmentalizing the activity of PC-PLC during infection.


Sign in / Sign up

Export Citation Format

Share Document