scholarly journals Correction: Functional modulation of IFT kinesins extends the sensory repertoire of ciliated neurons in Caenorhabditis elegans

2006 ◽  
Vol 175 (5) ◽  
pp. 837-837
Author(s):  
James E. Evans ◽  
Joshua J. Snow ◽  
Amy L. Gunnarson ◽  
Guangshuo Ou ◽  
Henning Stahlberg ◽  
...  
2006 ◽  
Vol 172 (5) ◽  
pp. 663-669 ◽  
Author(s):  
James E. Evans ◽  
Joshua J. Snow ◽  
Amy L. Gunnarson ◽  
Guangshuo Ou ◽  
Henning Stahlberg ◽  
...  

The diversity of sensory cilia on Caenorhabditis elegans neurons allows the animal to detect a variety of sensory stimuli. Sensory cilia are assembled by intraflagellar transport (IFT) kinesins, which transport ciliary precursors, bound to IFT particles, along the ciliary axoneme for incorporation into ciliary structures. Using fluorescence microscopy of living animals and serial section electron microscopy of high pressure–frozen, freeze-substituted IFT motor mutants, we found that two IFT kinesins, homodimeric OSM-3 kinesin and heterotrimeric kinesin II, function in a partially redundant manner to build full-length amphid channel cilia but are completely redundant for building full-length amphid wing (AWC) cilia. This difference reflects cilia-specific differences in OSM-3 activity, which serves to extend distal singlets in channel cilia but not in AWC cilia, which lack such singlets. Moreover, AWC-specific chemotaxis assays reveal novel sensory functions for kinesin II in these wing cilia. We propose that kinesin II is a “canonical” IFT motor, whereas OSM-3 is an “accessory” IFT motor, and that subtle changes in the deployment or actions of these IFT kinesins can contribute to differences in cilia morphology, cilia function, and sensory perception.


2006 ◽  
Vol 172 (6) ◽  
pp. 949-949
Author(s):  
James E. Evans ◽  
Joshua J. Snow ◽  
Amy L. Gunnarson ◽  
Guangshuo Ou ◽  
Henning Stahlberg ◽  
...  

Nematology ◽  
2018 ◽  
Vol 20 (3) ◽  
pp. 201-209 ◽  
Author(s):  
Eduardo Moreno ◽  
Ralf J. Sommer

Nematodes respond to a multitude of environmental cues. For example, the social behaviours clumping and bordering were described as a mechanism of hyperoxia avoidance in Caenorhabditis elegans and Pristionchus pacificus. A recent study in P. pacificus revealed a novel regulatory pathway that inhibits social behaviour in a response to an as yet unknown environmental cue. This environmental signal is recognised by ciliated neurons, as mutants defective in intraflagellar transport (IFT) proteins display social behaviours. The IFT machinery represents a large protein complex and many mutants in genes encoding IFT proteins are available in C. elegans. However, social phenotypes in C. elegans IFT mutants have never been reported. Here, we examined 15 previously isolated C. elegans IFT mutants and found that most of them showed strong social behaviour. These findings indicate conservation in the inhibitory mechanism of social behaviour between P. pacificus and C. elegans.


2019 ◽  
Author(s):  
Jyothi S. Akella ◽  
Stephen P. Carter ◽  
Fatima Rizvi ◽  
Ken C.Q. Nguyen ◽  
Sofia Tsiropoulou ◽  
...  

ABSTRACTCilia both receive and send information, the latter in the form of extracellular vesicles (EVs). EVs are nano-communication devices that cells shed to influence cell, tissue, and organism behavior. Mechanisms driving ciliary EV biogenesis and environment release are almost entirely unknown. Here, we show that the ciliary G-protein RAB28, associated with human autosomal recessive cone-rod dystrophy, negatively regulates EV levels in the sensory organs of Caenorhabditis elegans. We also find that sequential targeting of lipidated RAB28 to periciliary and ciliary membranes is highly dependent on the BBSome and PDE6D, respectively, and that BBSome loss causes excessive and ectopic EV production. Our data indicate that RAB28 and the BBSome are key in vivo regulators of EV production at the periciliary membrane. Our findings also suggest that EVs control sensory organ homeostasis by mediating communication between ciliated neurons and glia, and that defects in ciliary EV biogenesis may contribute to human ciliopathies.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Adria Razzauti ◽  
Patrick Laurent

Cilia are sensory organelles protruding from cell surfaces. Release of extracellular vesicles (EVs) from cilia was previously observed in mammals, Chlamydomonas, and in male Caenorhabditis elegans. Using the EV marker TSP-6 (an ortholog of mammalian CD9) and other ciliary receptors, we show that EVs are formed from ciliated sensory neurons in C. elegans hermaphrodites. Release of EVs is observed from two ciliary locations: the cilia tip and/or periciliary membrane compartment (PCMC). Outward budding of EVs from the cilia tip leads to their release into the environment. EVs’ budding from the PCMC is concomitantly phagocytosed by the associated glial cells. To maintain cilia composition, a tight regulation of cargo import and removal is achieved by the action of intra-flagellar transport (IFT). Unbalanced IFT due to cargo overexpression or mutations in the IFT machinery leads to local accumulation of ciliary proteins. Disposal of excess ciliary proteins via EVs reduces their local accumulation and exports them to the environment and/or to the glia associated to these ciliated neurons. We suggest that EV budding from cilia subcompartments acts as a safeguard mechanism to remove deleterious excess of ciliary material.


2021 ◽  
Author(s):  
Jintong Liu ◽  
Jing Huang ◽  
Lei Zhang ◽  
Jianping Lei

We review the general principle of the design and functional modulation of nanoscaled MOF heterostructures, and biomedical applications in enhanced therapy.


2002 ◽  
Vol 69 ◽  
pp. 117-134 ◽  
Author(s):  
Stuart M. Haslam ◽  
David Gems ◽  
Howard R. Morris ◽  
Anne Dell

There is no doubt that the immense amount of information that is being generated by the initial sequencing and secondary interrogation of various genomes will change the face of glycobiological research. However, a major area of concern is that detailed structural knowledge of the ultimate products of genes that are identified as being involved in glycoconjugate biosynthesis is still limited. This is illustrated clearly by the nematode worm Caenorhabditis elegans, which was the first multicellular organism to have its entire genome sequenced. To date, only limited structural data on the glycosylated molecules of this organism have been reported. Our laboratory is addressing this problem by performing detailed MS structural characterization of the N-linked glycans of C. elegans; high-mannose structures dominate, with only minor amounts of complex-type structures. Novel, highly fucosylated truncated structures are also present which are difucosylated on the proximal N-acetylglucosamine of the chitobiose core as well as containing unusual Fucα1–2Gal1–2Man as peripheral structures. The implications of these results in terms of the identification of ligands for genomically predicted lectins and potential glycosyltransferases are discussed in this chapter. Current knowledge on the glycomes of other model organisms such as Dictyostelium discoideum, Saccharomyces cerevisiae and Drosophila melanogaster is also discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document