scholarly journals Promyelocytic leukemia nuclear bodies behave as DNA damage sensors whose response to DNA double-strand breaks is regulated by NBS1 and the kinases ATM, Chk2, and ATR

2006 ◽  
Vol 175 (1) ◽  
pp. 55-66 ◽  
Author(s):  
Graham Dellaire ◽  
Reagan W. Ching ◽  
Kashif Ahmed ◽  
Farid Jalali ◽  
Kenneth C.K. Tse ◽  
...  

The promyelocytic leukemia (PML) nuclear body (NB) is a dynamic subnuclear compartment that is implicated in tumor suppression, as well as in the transcription, replication, and repair of DNA. PML NB number can change during the cell cycle, increasing in S phase and in response to cellular stress, including DNA damage. Although topological changes in chromatin after DNA damage may affect the integrity of PML NBs, the molecular or structural basis for an increase in PML NB number has not been elucidated. We demonstrate that after DNA double-strand break induction, the increase in PML NB number is based on a biophysical process, as well as ongoing cell cycle progression and DNA repair. PML NBs increase in number by a supramolecular fission mechanism similar to that observed in S-phase cells, and which is delayed or inhibited by the loss of function of NBS1, ATM, Chk2, and ATR kinase. Therefore, an increase in PML NB number is an intrinsic element of the cellular response to DNA damage.

2001 ◽  
Vol 21 (21) ◽  
pp. 7150-7162 ◽  
Author(s):  
Ronjon K. Chakraverty ◽  
Jonathan M. Kearsey ◽  
Thomas J. Oakley ◽  
Muriel Grenon ◽  
Maria-Angeles de la Torre Ruiz ◽  
...  

ABSTRACT Deletion of the Saccharomyces cerevisiae TOP3gene, encoding Top3p, leads to a slow-growth phenotype characterized by an accumulation of cells with a late S/G2content of DNA (S. Gangloff, J. P. McDonald, C. Bendixen, L. Arthur, and R. Rothstein, Mol. Cell. Biol. 14:8391–8398, 1994). We have investigated the function of TOP3 during cell cycle progression and the molecular basis for the cell cycle delay seen in top3Δ strains. We show that top3Δ mutants exhibit a RAD24-dependent delay in the G2 phase, suggesting a possible role for Top3p in the resolution of abnormal DNA structures or DNA damage arising during S phase. Consistent with this notion,top3Δ strains are sensitive to killing by a variety of DNA-damaging agents, including UV light and the alkylating agent methyl methanesulfonate, and are partially defective in the intra-S-phase checkpoint that slows the rate of S-phase progression following exposure to DNA-damaging agents. This S-phase checkpoint defect is associated with a defect in phosphorylation of Rad53p, indicating that, in the absence of Top3p, the efficiency of sensing the existence of DNA damage or signaling to the Rad53 kinase is impaired. Consistent with a role for Top3p specifically during S phase, top3Δ mutants are sensitive to the replication inhibitor hydroxyurea, expression of the TOP3 mRNA is activated in late G1 phase, and DNA damage checkpoints operating outside of S phase are unaffected by deletion of TOP3. All of these phenotypic consequences of loss of Top3p function are at least partially suppressed by deletion of SGS1, the yeast homologue of the human Bloom's and Werner's syndrome genes. These data implicate Top3p and, by inference, Sgs1p in an S-phase-specific role in the cellular response to DNA damage. A model proposing a role for these proteins in S phase is presented.


2017 ◽  
Author(s):  
Hui Xiao Chao ◽  
Cere E. Poovey ◽  
Ashley A. Privette ◽  
Gavin D. Grant ◽  
Hui Yan Chao ◽  
...  

ABSTRACTDNA damage checkpoints are cellular mechanisms that protect the integrity of the genome during cell cycle progression. In response to genotoxic stress, these checkpoints halt cell cycle progression until the damage is repaired, allowing cells enough time to recover from damage before resuming normal proliferation. Here, we investigate the temporal dynamics of DNA damage checkpoints in individual proliferating cells by observing cell cycle phase transitions following acute DNA damage. We find that in gap phases (G1 and G2), DNA damage triggers an abrupt halt to cell cycle progression in which the duration of arrest correlates with the severity of damage. However, cells that have already progressed beyond a proposed “commitment point” within a given cell cycle phase readily transition to the next phase, revealing a relaxation of checkpoint stringency during later stages of certain cell cycle phases. In contrast to G1 and G2, cell cycle progression in S phase is significantly less sensitive to DNA damage. Instead of exhibiting a complete halt, we find that increasing DNA damage doses leads to decreased rates of S-phase progression followed by arrest in the subsequent G2. Moreover, these phase-specific differences in DNA damage checkpoint dynamics are associated with corresponding differences in the proportions of irreversibly arrested cells. Thus, the precise timing of DNA damage determines the sensitivity, rate of cell cycle progression, and functional outcomes for damaged cells. These findings should inform our understanding of cell fate decisions after treatment with common cancer therapeutics such as genotoxins or spindle poisons, which often target cells in a specific cell cycle phase.


2000 ◽  
Vol 20 (20) ◽  
pp. 7751-7763 ◽  
Author(s):  
Karen E. Knudsen ◽  
Dana Booth ◽  
Soheil Naderi ◽  
Zvjezdana Sever-Chroneos ◽  
Anne F. Fribourg ◽  
...  

ABSTRACT The retinoblastoma tumor suppressor protein (RB) is a potent inhibitor of cell proliferation. RB is expressed throughout the cell cycle, but its antiproliferative activity is neutralized by phosphorylation during the G1/S transition. RB plays an essential role in the G1 arrest induced by a variety of growth inhibitory signals. In this report, RB is shown to also be required for an intra-S-phase response to DNA damage. Treatment with cisplatin, etoposide, or mitomycin C inhibited S-phase progression in Rb+/+ but not in Rb−/− mouse embryo fibroblasts. Dephosphorylation of RB in S-phase cells temporally preceded the inhibition of DNA synthesis. This S-phase dephosphorylation of RB and subsequent inhibition of DNA replication was observed in p21Cip1-deficient cells. The induction of the RB-dependent intra-S-phase arrest persisted for days and correlated with a protection against DNA damage-induced cell death. These results demonstrate that RB plays a protective role in response to genotoxic stress by inhibiting cell cycle progression in G1 and in S phase.


2006 ◽  
Vol 17 (4) ◽  
pp. 1540-1548 ◽  
Author(s):  
Deanna M. Koepp ◽  
Andrew C. Kile ◽  
Swarna Swaminathan ◽  
Veronica Rodriguez-Rivera

Ubiquitin-mediated proteolysis plays a key role in many pathways inside the cell and is particularly important in regulating cell cycle transitions. SCF (Skp1/Cul1/F-box protein) complexes are modular ubiquitin ligases whose specificity is determined by a substrate-binding F-box protein. Dia2 is a Saccharomyces cerevisiae F-box protein previously described to play a role in invasive growth and pheromone response pathways. We find that deletion of DIA2 renders cells cold-sensitive and subject to defects in cell cycle progression, including premature S-phase entry. Consistent with a role in regulating DNA replication, the Dia2 protein binds replication origins. Furthermore, the dia2 mutant accumulates DNA damage in both S and G2/M phases of the cell cycle. These defects are likely a result of the absence of SCFDia2 activity, as a Dia2 ΔF-box mutant shows similar phenotypes. Interestingly, prolonging G1-phase in dia2 cells prevents the accumulation of DNA damage in S-phase. We propose that Dia2 is an origin-binding protein that plays a role in regulating DNA replication.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Pan ◽  
Izhar Hyder Qazi ◽  
Shichao Guo ◽  
Jingyu Yang ◽  
Jianpeng Qin ◽  
...  

Abstract Background This study investigated the effect of melatonin (MT) on cell cycle (G1/S/G2/M) of parthenogenetic zygotes developed from vitrified-warmed mouse metaphase II (MII) oocytes and elucidated the potential mechanism of MT action in the first cleavage of embryos. Results After vitrification and warming, oocytes were parthenogenetically activated (PA) and in vitro cultured (IVC). Then the spindle morphology and chromosome segregation in oocytes, the maternal mRNA levels of genes including Miss, Doc1r, Setd2 and Ythdf2 in activated oocytes, pronuclear formation, the S phase duration in zygotes, mitochondrial function at G1 phase, reactive oxygen species (ROS) level at S phase, DNA damage at G2 phase, early apoptosis in 2-cell embryos, cleavage and blastocyst formation rates were evaluated. The results indicated that the vitrification/warming procedures led to following perturbations 1) spindle abnormalities and chromosome misalignment, alteration of maternal mRNAs and delay in pronucleus formation, 2) decreased mitochondrial membrane potential (MMP) and lower adenosine triphosphate (ATP) levels, increased ROS production and DNA damage, G1/S and S/G2 phase transition delay, and delayed first cleavage, and 3) increased early apoptosis and lower levels of cleavage and blastocyst formation. Our results further revealed that such negative impacts of oocyte cryopreservation could be alleviated by supplementation of warming, recovery, PA and IVC media with 10− 9 mol/L MT before the embryos moved into the 2-cell stage of development. Conclusions MT might promote cell cycle progression via regulation of MMP, ATP, ROS and maternal mRNA levels, potentially increasing the first cleavage of parthenogenetic zygotes developed from vitrified–warmed mouse oocytes and their subsequent development.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
David Reisman ◽  
Paula Takahashi ◽  
Amanda Polson ◽  
Kristy Boggs

Thep53tumor suppressor induces the transcription of genes that negatively regulate progression of the cell cycle in response to DNA damage or other cellular stressors and thus participates in maintaining genome stability. Numerous studies have demonstrated thatp53transcription is activated before or during early S-phase in cells progressing from G0/G1into S-phase through the combined action of two DNA-binding factors RBP-Jκand C/EBPβ-2. Here, we review evidence that this induction occurs to provide availablep53mRNA in order to prepare the cell for DNA damage in S-phase, this ensuring a rapid response to DNA damage before exiting this stage of the cell cycle.


2017 ◽  
Vol 8 (5) ◽  
pp. e2816-e2816 ◽  
Author(s):  
Valérie Glorian ◽  
Jennifer Allègre ◽  
Jean Berthelet ◽  
Baptiste Dumetier ◽  
Pierre-Marie Boutanquoi ◽  
...  

Abstract The E2F transcription factor 1 is subtly regulated along the cell cycle progression and in response to DNA damage by post-translational modifications. Here, we demonstrated that the E3-ubiquitin ligase cellular inhibitor of apoptosis 1 (cIAP1) increases E2F1 K63-poly-ubiquitination on the lysine residue 161/164 cluster, which is associated with the transcriptional factor stability and activity. Mutation of these lysine residues completely abrogates the binding of E2F1 to CCNE, TP73 and APAF1 promoters, thus inhibiting transcriptional activation of these genes and E2F1-mediated cell proliferation control. Importantly, E2F1 stabilization in response to etoposide-induced DNA damage or during the S phase of cell cycle, as revealed by cyclin A silencing, is associated with K63-poly-ubiquitinylation of E2F1 on lysine 161/164 residues and involves cIAP1. Our results reveal an additional level of regulation of the stability and the activity of E2F1 by a non-degradative K63-poly-ubiquitination and uncover a novel function for the E3-ubiquitin ligase cIAP1.


2013 ◽  
Vol 41 (3) ◽  
pp. 777-782 ◽  
Author(s):  
Aoife O’Shaughnessy ◽  
Brian Hendrich

The CHD4 (chromodomain-helicase-DNA-binding 4) (or Mi-2β) protein is a founding component of the NuRD (nucleosome remodelling and deacetylation) complex. NuRD has long been known to function in transcriptional regulation, and is conserved throughout the animal and plant kingdoms. In recent years, evidence has steadily accumulated indicating that CHD4 can both function outside of the NuRD complex and also play important roles in cellular processes other than transcriptional regulation. A number of loss-of-function studies have identified important roles for CHD4 in the DNA-damage response and in cell cycle progression through S-phase and into G2. Furthermore, as part of NuRD, it participates in regulating acetylation levels of p53, thereby indirectly regulating the G1/S cell cycle checkpoint. Although CHD4 has a somewhat complicated relationship with the cell cycle, recent evidence indicates that CHD4 may exert some tumour-suppressor functions in human carcinogenesis. CHD4 is a defining member of the NuRD complex, but evidence is accumulating that CHD4 also plays important NuRD-independent roles in the DNA-damage response and cell cycle progression, as well as in transcriptional regulation.


2009 ◽  
Vol 29 (8) ◽  
pp. 2032-2041 ◽  
Author(s):  
Samuela Soza ◽  
Valentina Leva ◽  
Riccardo Vago ◽  
Giovanni Ferrari ◽  
Giuliano Mazzini ◽  
...  

ABSTRACT 46BR.1G1 cells derive from a patient with a genetic syndrome characterized by drastically reduced replicative DNA ligase I (LigI) activity and delayed joining of Okazaki fragments. Here we show that the replication defect in 46BR.1G1 cells results in the accumulation of both single-stranded and double-stranded DNA breaks. This is accompanied by phosphorylation of the H2AX histone variant and the formation of γH2AX foci that mark damaged DNA. Single-cell analysis demonstrates that the number of γH2AX foci in LigI-defective cells fluctuates during the cell cycle: they form in S phase, persist in mitosis, and eventually diminish in G1 phase. Notably, replication-dependent DNA damage in 46BR.1G1 cells only moderately delays cell cycle progression and does not activate the S-phase-specific ATR/Chk1 checkpoint pathway that also monitors the execution of mitosis. In contrast, the ATM/Chk2 pathway is activated. The phenotype of 46BR.1G1 cells is efficiently corrected by the wild-type LigI but is worsened by a LigI mutant that mimics the hyperphosphorylated enzyme in M phase. Notably, the expression of the phosphomimetic mutant drastically affects cell morphology and the organization of the cytoskeleton, unveiling an unexpected link between endogenous DNA damage and the structural organization of the cell.


2001 ◽  
Vol 21 (12) ◽  
pp. 3913-3925 ◽  
Author(s):  
Vera Paciotti ◽  
Michela Clerici ◽  
Maddalena Scotti ◽  
Giovanna Lucchini ◽  
Maria Pia Longhese

ABSTRACT DNA damage checkpoints lead to the inhibition of cell cycle progression following DNA damage. The Saccharomyces cerevisiae Mec1 checkpoint protein, a phosphatidylinositol kinase-related protein, is required for transient cell cycle arrest in response to DNA damage or DNA replication defects. We show thatmec1 kinase-deficient (mec1kd) mutants are indistinguishable from mec1Δ cells, indicating that the Mec1 conserved kinase domain is required for all known Mec1 functions, including cell viability and proper DNA damage response. Mec1kd variants maintain the ability to physically interact with both Ddc2 and wild-type Mec1 and cause dominant checkpoint defects when overproduced in MEC1 cells, impairing the ability of cells to slow down S phase entry and progression after DNA damage in G1 or during S phase. Conversely, an excess of Mec1kd inMEC1 cells does not abrogate the G2/M checkpoint, suggesting that Mec1 functions required for response to aberrant DNA structures during specific cell cycle stages can be separable. In agreement with this hypothesis, we describe two new hypomorphic mec1 mutants that are completely defective in the G1/S and intra-S DNA damage checkpoints but properly delay nuclear division after UV irradiation in G2. The finding that these mutants, although indistinguishable frommec1Δ cells with respect to the ability to replicate a damaged DNA template, do not lose viability after UV light and methyl methanesulfonate treatment suggests that checkpoint impairments do not necessarily result in hypersensitivity to DNA-damaging agents.


Sign in / Sign up

Export Citation Format

Share Document