scholarly journals Cell size and invasion in TGF-β–induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway

2007 ◽  
Vol 178 (3) ◽  
pp. 437-451 ◽  
Author(s):  
Samy Lamouille ◽  
Rik Derynck

Epithelial to mesenchymal transition (EMT) occurs during development and cancer progression to metastasis and results in enhanced cell motility and invasion. Transforming growth factor-β (TGF-β) induces EMT through Smads, leading to transcriptional regulation, and through non-Smad pathways. We observe that TGF-β induces increased cell size and protein content during EMT. This translational regulation results from activation by TGF-β of mammalian target of rapamycin (mTOR) through phosphatidylinositol 3-kinase and Akt, leading to the phosphorylation of S6 kinase 1 and eukaryotic initiation factor 4E–binding protein 1, which are direct regulators of translation initiation. Rapamycin, a specific inhibitor of mTOR complex 1, inhibits the TGF-β–induced translation pathway and increase in cell size without affecting the EMT phenotype. Additionally, rapamycin decreases the migratory and invasive behavior of cells that accompany TGF-β–induced EMT. The TGF-β–induced translation pathway through mTOR complements the transcription pathway through Smads. Activation of mTOR by TGF-β, which leads to increased cell size and invasion, adds to the role of TGF-β–induced EMT in cancer progression and may represent a therapeutic opportunity for rapamycin analogues in cancer.

Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 726 ◽  
Author(s):  
Sudha Suriyamurthy ◽  
David Baker ◽  
Peter ten Dijke ◽  
Prasanna Vasudevan Iyengar

The Transforming Growth Factor-β (TGF-β) signaling pathway has a well-documented, context-dependent role in breast cancer development. In normal and premalignant cells, it acts as a tumor suppressor. By contrast, during the malignant phases of breast cancer progression, the TGF-β signaling pathway elicits tumor promoting effects particularly by driving the epithelial to mesenchymal transition (EMT), which enhances tumor cell migration, invasion and ultimately metastasis to distant organs. The molecular and cellular mechanisms that govern this dual capacity are being uncovered at multiple molecular levels. This review will focus on recent advances relating to how epigenetic changes such as acetylation and methylation control the outcome of TGF-β signaling and alter the fate of breast cancer cells. In addition, we will highlight how this knowledge can be further exploited to curb tumorigenesis by selective targeting of the TGF-β signaling pathway.


2014 ◽  
Vol 25 (22) ◽  
pp. 3528-3540 ◽  
Author(s):  
Lukas D. Osborne ◽  
George Z. Li ◽  
Tam How ◽  
E. Tim O'Brien ◽  
Gerard C. Blobe ◽  
...  

Recent studies implicate a role for cell mechanics in cancer progression. The epithelial-to-mesenchymal transition (EMT) regulates the detachment of cancer cells from the epithelium and facilitates their invasion into stromal tissue. Although classic EMT hallmarks include loss of cell–cell adhesions, morphology changes, and increased invasion capacity, little is known about the associated mechanical changes. Previously, force application on integrins has been shown to initiate cytoskeletal rearrangements that result in increased cell stiffness and a stiffening response. Here we demonstrate that transforming growth factor β (TGF-β)–induced EMT results in decreased stiffness and loss of the normal stiffening response to force applied on integrins. We find that suppression of the RhoA guanine nucleotide exchange factors (GEFs) LARG and GEF-H1 through TGF-β/ALK5–enhanced proteasomal degradation mediates these changes in cell mechanics and affects EMT-associated invasion. Taken together, our results reveal a functional connection between attenuated stiffness and stiffening response and the increased invasion capacity acquired after TGF-β–induced EMT.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 183
Author(s):  
Akshita B. Bhatt ◽  
Saloni Patel ◽  
Margarite D. Matossian ◽  
Deniz A. Ucar ◽  
Lucio Miele ◽  
...  

Extracellular signal-regulated kinase (ERK5) is an essential regulator of cancer progression, tumor relapse, and poor patient survival. Epithelial to mesenchymal transition (EMT) is a complex oncogenic process, which drives cell invasion, stemness, and metastases. Activators of ERK5, including mitogen-activated protein kinase 5 (MEK5), tumor necrosis factor α (TNF-α), and transforming growth factor-β (TGF-β), are known to induce EMT and metastases in breast, lung, colorectal, and other cancers. Several downstream targets of the ERK5 pathway, such as myocyte-specific enhancer factor 2c (MEF2C), activator protein-1 (AP-1), focal adhesion kinase (FAK), and c-Myc, play a critical role in the regulation of EMT transcription factors SNAIL, SLUG, and β-catenin. Moreover, ERK5 activation increases the release of extracellular matrix metalloproteinases (MMPs), facilitating breakdown of the extracellular matrix (ECM) and local tumor invasion. Targeting the ERK5 signaling pathway using small molecule inhibitors, microRNAs, and knockdown approaches decreases EMT, cell invasion, and metastases via several mechanisms. The focus of the current review is to highlight the mechanisms which are known to mediate cancer EMT via ERK5 signaling. Several therapeutic approaches that can be undertaken to target the ERK5 pathway and inhibit or reverse EMT and metastases are discussed.


Author(s):  
Long-Yuan Zhou ◽  
Si-Nan Lin ◽  
Florian Rieder ◽  
Min-Hu Chen ◽  
Sheng-Hong Zhang ◽  
...  

Abstract Fibrosis is a major pathway to organ injury and failure, accounting for more than one-third of deaths worldwide. Intestinal fibrosis causes irreversible and serious clinical complications, such as strictures and obstruction, secondary to a complex pathogenesis. Under the stimulation of profibrotic soluble factors, excessive activation of mesenchymal cells causes extracellular matrix deposition via canonical transforming growth factor-β/Smads signaling or other pathways (eg, epithelial-to-mesenchymal transition and endothelial-to-mesenchymal transition) in intestinal fibrogenesis. In recent studies, the importance of noncoding RNAs (ncRNAs) stands out in fibrotic diseases in that ncRNAs exhibit a remarkable variety of biological functions in modulating the aforementioned fibrogenic responses. In this review, we summarize the role of ncRNAs, including the emerging long ncRNAs and circular RNAs, in intestinal fibrogenesis. Notably, the translational potential of ncRNAs as diagnostic biomarkers and therapeutic targets in the management of intestinal fibrosis is discussed based on clinical trials from fibrotic diseases in other organs. The main points of this review include the following: • Characteristics of ncRNAs and mechanisms of intestinal fibrogenesis • Wide participation of ncRNAs (especially the emerging long ncRNAs and circular RNAs) in intestinal fibrosis, including transforming growth factor-β signaling, epithelial-to-mesenchymal transition/endothelial-to-mesenchymal transition, and extracellular matrix remodeling • Translational potential of ncRNAs in the diagnosis and treatment of intestinal fibrosis based on clinical trials from fibrotic diseases in other organs


Biomolecules ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 743 ◽  
Author(s):  
Linh Huynh ◽  
Christopher Hipolito ◽  
Peter ten Dijke

Transforming growth factor (TGF)-β is a secreted multifunctional cytokine that signals via plasma membrane TGF-β type I and type II receptors and intercellular SMAD transcriptional effectors. Aberrant inter- and intracellular TGF-β signaling can contribute to cancer progression. In normal cells and early stages of cancer, TGF-β can stimulate epithelial growth arrest and elicit a tumor suppressor function. However, in late stages of cancer, when the cytostatic effects of TGF-β in cancer cells are blocked, TGF-β signaling can act as tumor promoter by its ability to stimulate epithelial-to-mesenchymal transition of cancer cells, by stimulating angiogenesis, and by promoting evasion of immune responses. In this review, we will discuss the rationale and challenges of targeting TGF-β signaling in cancer and summarize the clinical status of TGF-β signaling inhibitors that interfere with TGF−β bioavailability, TGF-β/receptor interaction, or TGF-β receptor kinase function. Moreover, we will discuss targeting of TGF-β signaling modulators and downstream effectors as well as alternative approaches by using promising technologies that may lead to entirely new classes of drugs.


2019 ◽  
Vol 12 (570) ◽  
pp. eaau8544 ◽  
Author(s):  
Yoko Katsuno ◽  
Dominique Stephan Meyer ◽  
Ziyang Zhang ◽  
Kevan M. Shokat ◽  
Rosemary J. Akhurst ◽  
...  

Tumors comprise cancer stem cells (CSCs) and their heterogeneous progeny within a stromal microenvironment. In response to transforming growth factor–β (TGF-β), epithelial and carcinoma cells undergo a partial or complete epithelial-mesenchymal transition (EMT), which contributes to cancer progression. This process is seen as reversible because cells revert to an epithelial phenotype upon TGF-β removal. However, we found that prolonged TGF-β exposure, mimicking the state of in vivo carcinomas, promotes stable EMT in mammary epithelial and carcinoma cells, in contrast to the reversible EMT induced by a shorter exposure. The stabilized EMT was accompanied by stably enhanced stem cell generation and anticancer drug resistance. Furthermore, prolonged TGF-β exposure enhanced mammalian target of rapamycin (mTOR) signaling. A bitopic mTOR inhibitor repressed CSC generation, anchorage independence, cell survival, and chemoresistance and efficiently inhibited tumorigenesis in mice. These results reveal a role for mTOR in the stabilization of stemness and drug resistance of breast cancer cells and position mTOR inhibition as a treatment strategy to target CSCs.


Sign in / Sign up

Export Citation Format

Share Document