scholarly journals Activation of Cdc6 by MyoD is associated with the expansion of quiescent myogenic satellite cells

2010 ◽  
Vol 188 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Keman Zhang ◽  
Jingfeng Sha ◽  
Marian L. Harter

MyoD is a transcriptional factor that is required for the differentiation of muscle stem cells (satellite cells). In this study, we describe a previously unknown function for MyoD in regulating a gene (Cdc6) that is vital to endowing chromatin with the capability of replicating DNA. In C2C12 and primary mouse myoblasts, we show that MyoD can occupy an E-box within the promoter of Cdc6 and that this association, along with E2F3a, is required for its activity. MyoD and Cdc6 are both expressed after quiescent C2C12 myoblasts or satellite cells in association with myofibers are stimulated for growth, but MyoD appears at least 2–3 h earlier than Cdc6. Finally, knockdown of MyoD impairs the ability of C2C12 cells to express Cdc6 after leaving quiescence, and as a result, they cannot fully progress into S phase. Our results define a mechanism by which MyoD helps myogenic satellite cells to enter into the first round of DNA replication after transitioning out of quiescence.

2013 ◽  
Vol 304 (2) ◽  
pp. C128-C136 ◽  
Author(s):  
Miriam Hoene ◽  
Heike Runge ◽  
Hans Ulrich Häring ◽  
Erwin D. Schleicher ◽  
Cora Weigert

Myogenic differentiation of skeletal muscle cells is characterized by a sequence of events that include activation of signal transducer and activator of transcription 3 (STAT3) and enhanced expression of its target gene Socs3. Autocrine effects of IL-6 may contribute to the activation of the STAT3-Socs3 cascade and thus to myogenic differentiation. The importance of IL-6 and STAT3 for the differentiation process was studied in C2C12 cells and in primary mouse wild-type and IL-6−/− skeletal muscle cells. In differentiating C2C12 myoblasts, the upregulation of IL-6 mRNA expression and protein secretion started after increased phosphorylation of STAT3 on tyrosine 705 and increased mRNA expression of Socs3 was observed. Knockdown of STAT3 and IL-6 mRNA in differentiating C2C12 myoblasts impaired the expression of the myogenic markers myogenin and MyHC IIb and subsequently myotube fusion. However, the knockdown of IL-6 did not prevent the induction of STAT3 tyrosine phosphorylation. The IL-6-independent activation of STAT3 was verified in differentiating primary IL-6−/− myoblasts. The phosphorylation of STAT3 and the expression levels of STAT3, Socs3, and myogenin during differentiation were comparable in the primary myoblasts independent of the genotype. However, IL-6−/− cells failed to induce MyHC IIb expression to the same level as in wild-type cells and showed reduced myotube formation. Supplementation of IL-6 could partially restore the fusion of IL-6−/− cells. These data demonstrate that IL-6 depletion during myogenic differentiation does not reduce the activation of the STAT3-Socs3 cascade, while IL-6 and STAT3 are both necessary to promote myotube fusion.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Sumiaki Fukuda ◽  
Akihiro Kaneshige ◽  
Takayuki Kaji ◽  
Yu-taro Noguchi ◽  
Yusei Takemoto ◽  
...  

In overloaded and regenerating muscle, the generation of new myonuclei depends on muscle satellite cells (MuSCs). Because MuSC behaviors in these two environments have not been considered separately, MuSC behaviors in overloaded muscle remain unexamined. Here, we show that most MuSCs in overloaded muscle, unlike MuSCs in regenerating muscle, proliferate in the absence of MyoD expression. Mechanistically, MuSCs in overloaded muscle sustain the expression of Heyl, a Notch effector gene, to suppress MyoD expression, which allows effective MuSC proliferation on myofibers and beneath the basal lamina. Although Heyl-knockout mice show no impairment in an injury model, in a hypertrophy model, their muscles harbor fewer new MuSC-derived myonuclei due to increased MyoD expression and diminished proliferation, which ultimately causes blunted hypertrophy. Our results show that sustained HeyL expression is critical for MuSC proliferation specifically in overloaded muscle, and thus indicate that the MuSC-proliferation mechanism differs in overloaded and regenerating muscle.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Aurore L'honoré ◽  
Pierre-Henri Commère ◽  
Elisa Negroni ◽  
Giorgia Pallafacchina ◽  
Bertrand Friguet ◽  
...  

Skeletal muscle regeneration depends on satellite cells. After injury these muscle stem cells exit quiescence, proliferate and differentiate to regenerate damaged fibres. We show that this progression is accompanied by metabolic changes leading to increased production of reactive oxygen species (ROS). Using Pitx2/3 single and double mutant mice that provide genetic models of deregulated redox states, we demonstrate that moderate overproduction of ROS results in premature differentiation of satellite cells while high levels lead to their senescence and regenerative failure. Using the ROS scavenger, N-Acetyl-Cysteine (NAC), in primary cultures we show that a physiological increase in ROS is required for satellite cells to exit the cell cycle and initiate differentiation through the redox activation of p38α MAP kinase. Subjecting cultured satellite cells to transient inhibition of P38α MAP kinase in conjunction with NAC treatment leads to their rapid expansion, with striking improvement of their regenerative potential in grafting experiments.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Manuel Scimeca ◽  
Elena Bonanno ◽  
Eleonora Piccirilli ◽  
Jacopo Baldi ◽  
Alessandro Mauriello ◽  
...  

Age-related bone diseases, such as osteoarthritis and osteoporosis, are strongly associated with sarcopenia and muscle fiber atrophy. In this study, we analyzed muscle biopsies in order to demonstrate that, in osteoarthritis patients, both osteophytes formation and regenerative properties of muscle stem cells are related to the same factors. In particular, thanks to immunohistochemistry, transmission electron microscopy, and immunogold labeling we investigated the role of BMP-2 in muscle stem cells activity. In patients with osteoarthritis both immunohistochemistry and transmission electron microscopy allowed us to note a higher number of CD44 positive satellite muscle cells forming syncytium. Moreover, the perinuclear and cytoplasmic expression of BMP-2 assessed byin situmolecular characterization of satellite cells syncytia suggest a very strict correlation between BMP-2 expression and muscle regeneration capability. Summing up, the higher BMP-2 expression in osteoarthritic patients could explain the increased bone mineral density as well as decreased muscle atrophy in osteoarthrosic patients. In conclusion, our results suggest that the control of physiological BMP-2 balance between bone and muscle tissues may be considered as a potential pharmacological target in bone-muscle related pathology.


2014 ◽  
Vol 306 (2) ◽  
pp. E150-E156 ◽  
Author(s):  
Mara Fornaro ◽  
Aaron C. Hinken ◽  
Saul Needle ◽  
Erding Hu ◽  
Anne-Ulrike Trendelenburg ◽  
...  

A splice form of IGF-1, IGF-1Eb, is upregulated after exercise or injury. Physiological responses have been ascribed to the 24-amino acid COOH-terminal peptide that is cleaved from the NH3-terminal 70-amino acid mature IGF-1 protein. This COOH-terminal peptide was termed “mechano-growth factor” (MGF). Activities claimed for the MGF peptide included enhancing muscle satellite cell proliferation and delaying myoblast fusion. As such, MGF could represent a promising strategy to improve muscle regeneration. Thus, at our two pharmaceutical companies, we attempted to reproduce the claimed effect of MGF peptides on human and mouse muscle myoblast proliferation and differentiation in vitro. Concentrations of peptide up to 500 ng/ml failed to increase the proliferation of C2C12 cells or primary human skeletal muscle myoblasts. In contrast, all cell types exhibited a proliferative response to mature IGF-1 or full-length IGF-1Eb. MGF also failed to inhibit the differentiation of myoblasts into myotubes. To address whether the response to MGF was lost in these tissue culture lines, we measured proliferation and differentiation of primary mouse skeletal muscle stem cells exposed to MGF. This, too, failed to demonstrate a significant effect. Finally, we tested whether MGF could alter a separate documented in vitro effect of the peptide, activation of p-ERK, but not p-Akt, in cardiac myocytes. Although a robust response to IGF-1 was observed, there were no demonstrated activating responses from the native or a stabilized MGF peptide. These results call in to question whether there is a physiological role for MGF.


2013 ◽  
Vol 13 (6) ◽  
pp. 769
Author(s):  
Stefan Günther ◽  
Johnny Kim ◽  
Sawa Kostin ◽  
Christoph Lepper ◽  
Chen-Ming Fan ◽  
...  

2018 ◽  
Vol 315 (2) ◽  
pp. C247-C257 ◽  
Author(s):  
Andrea A. Domenighetti ◽  
Margie A. Mathewson ◽  
Rajeswari Pichika ◽  
Lydia A. Sibley ◽  
Leyna Zhao ◽  
...  

Cerebral palsy (CP) is the most common cause of pediatric neurodevelopmental and physical disability in the United States. It is defined as a group of motor disorders caused by a nonprogressive perinatal insult to the brain. Although the brain lesion is nonprogressive, there is a progressive, lifelong impact on skeletal muscles, which are shorter, spastic, and may develop debilitating contractures. Satellite cells are resident muscle stem cells that are indispensable for postnatal growth and regeneration of skeletal muscles. Here we measured the myogenic potential of satellite cells isolated from contractured muscles in children with CP. When compared with typically developing (TD) children, satellite cell-derived myoblasts from CP differentiated more slowly (slope: 0.013 (SD 0.013) CP vs. 0.091 (SD 0.024) TD over 24 h, P < 0.001) and fused less (fusion index: 21.3 (SD 8.6) CP vs. 81.3 (SD 7.7) TD after 48 h, P < 0.001) after exposure to low-serum conditions that stimulated myotube formation. This impairment was associated with downregulation of several markers important for myoblast fusion and myotube formation, including DNA methylation-dependent inhibition of promyogenic integrin-β 1D (ITGB1D) protein expression levels (−50% at 42 h), and ~25% loss of integrin-mediated focal adhesion kinase phosphorylation. The cytidine analog 5-Azacytidine (5-AZA), a demethylating agent, restored ITGB1D levels and promoted myogenesis in CP cultures. Our data demonstrate that muscle contractures in CP are associated with loss of satellite cell myogenic potential that is dependent on DNA methylation patterns affecting expression of genetic programs associated with muscle stem cell differentiation and muscle fiber formation.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Shaoting Fu ◽  
Xiaojing Lin ◽  
Lijun Yin ◽  
Xiaohui Wang

Abstract Background Androgen receptor (AR) exerts important roles in exercise-induced alterations of muscle mass, in which the proliferation and differentiation of satellite cells or myoblasts are crucial. Our previous study in C2C12 myoblasts demonstrated that 15% (mimic appropriate exercise) and 20% (mimic excessive exercise) stretches promoted and inhibited the proliferation respectively; and AR played a crucial role in 15% stretch-induced pro-proliferation through IGF-1-modulated PI3K/Akt, p38 and ERK1/2 pathways, but AR’s role in stretches-modulated proliferation of general myoblasts, especially 20% stretch, remains unclear, and the mechanisms need to be further clarified. Methods Firstly, the discrepancy in proliferation and the above indicators between L6 (without AR) and C2C12 (with AR) myoblasts were compared under 15% or 20% stretch. Then the influences of transfection AR or exogenous IGF-1 treatment on proliferation and these indicators were detected in stretched L6 myoblasts. Results (1) Under un-stretched state, the proliferation of L6 was slower than C2C12 cells. Furthermore, AR knockdown in C2C12 myoblasts repressed, while AR overexpression in L6 myoblasts promoted the proliferation. (2) 15% stretch-induced increases in the proliferation and activities of p38 and ERK1/2 were lower in L6 than C2C12 cells; AR overexpression enhanced the proliferation of 15% stretched L6 cells accompanied with the increases of p38 and ERK1/2 activities. (3) 20% stretch-induced anti-proliferation and inhibition of p38 activity were severer in L6 than C2C12 myoblasts; AR overexpression reversed the anti-proliferation of 20% stretch and enhanced p38 activity in L6 myoblasts. (4) In stretched L6 myoblasts, AR overexpression increased IGF-1R level despite no detectable IGF-1; and recombinant IGF-1 increased the proliferation, the level of IGF-1R, and the activities of p38 and ERK1/2 in 15% stretched L6 myoblasts. Conclusions The study demonstrated AR's crucial roles in stretches-regulated proliferation of myoblasts, and increased AR fulfilled 15% stretch's pro-proliferation via activating IGF-1R- p38 and ERK1/2 pathways while decreased AR achieved 20% stretch's anti-proliferation via inhibiting IGF-1R- p38 pathway, which is useful to understand in depth the role and mechanisms of AR in appropriate exercise increasing while excessive exercise decreasing muscle mass.


Author(s):  
Silvia Campanario ◽  
Ignacio Ramírez-Pardo ◽  
Xiaotong Hong ◽  
Joan Isern ◽  
Pura Muñoz-Cánoves

The skeletal muscle tissue in the adult is relatively stable under normal conditions but retains a striking ability to regenerate by its resident stem cells (satellite cells). Satellite cells exist in a quiescent (G0) state; however, in response to an injury, they reenter the cell cycle and start proliferating to provide sufficient progeny to form new myofibers or undergo self-renewal and returning to quiescence. Maintenance of satellite cell quiescence and entry of satellite cells into the activation state requires autophagy, a fundamental degradative and recycling process that preserves cellular proteostasis. With aging, satellite cell regenerative capacity declines, correlating with loss of autophagy. Enhancing autophagy in aged satellite cells restores their regenerative functions, underscoring this proteostatic activity’s relevance for tissue regeneration. Here we describe two strategies for assessing autophagic activity in satellite cells from GFP-LC3 reporter mice, which allows direct autophagosome labeling, or from non-transgenic (wild-type) mice, where autophagosomes can be immunostained. Treatment of GFP-LC3 or WT satellite cells with compounds that interfere with autophagosome-lysosome fusion enables measurement of autophagic activity by flow cytometry and immunofluorescence. Thus, the methods presented permit a relatively rapid assessment of autophagy in stem cells from skeletal muscle in homeostasis and in different pathological scenarios such as regeneration, aging or disease.


Sign in / Sign up

Export Citation Format

Share Document