scholarly journals Activation of cyclin B1–Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis

2010 ◽  
Vol 189 (2) ◽  
pp. 247-259 ◽  
Author(s):  
Olivier Gavet ◽  
Jonathon Pines

The cyclin B–Cdk1 kinase triggers mitosis in most eukaryotes. In animal cells, cyclin B shuttles between the nucleus and cytoplasm in interphase before rapidly accumulating in the nucleus at prophase, which promotes disassembly of the nuclear lamina and nuclear envelope breakdown (NEBD). What triggers the nuclear accumulation of cyclin B1 is presently unclear, although the prevailing view is that the Plk1 kinase inhibits its nuclear export. In this study, we use a biosensor specific for cyclin B1–Cdk1 activity to show that activating cyclin B1–Cdk1 immediately triggers its rapid accumulation in the nucleus through a 40-fold increase in nuclear import that remains dependent on Cdk1 activity until NEBD. Nevertheless, a substantial proportion of cyclin B1–Cdk1 remains in the cytoplasm. The increase in nuclear import is driven by changes in the nuclear import machinery that require neither Plk1 nor inhibition of nuclear export. Thus, the intrinsic link between cyclin B1–Cdk1 activation and its rapid nuclear import inherently coordinates the reorganization of the nucleus and the cytoplasm at mitotic entry.

1999 ◽  
Vol 112 (8) ◽  
pp. 1139-1148 ◽  
Author(s):  
E.H. Hinchcliffe ◽  
E.A. Thompson ◽  
F.J. Miller ◽  
J. Yang ◽  
G. Sluder

In sea urchin zygotes and mammalian cells nuclear envelope breakdown (NEB) is not driven simply by a rise in cytoplasmic cyclin dependent kinase 1-cyclin B (Cdk1-B) activity; the checkpoint monitoring DNA synthesis can prevent NEB in the face of mitotic levels of Cdk1-B. Using sea urchin zygotes we investigated whether this checkpoint prevents NEB by restricting import of regulatory proteins into the nucleus. We find that cyclin B1-GFP accumulates in nuclei that cannot complete DNA synthesis and do not break down. Thus, this checkpoint limits NEB downstream of both the cytoplasmic activation and nuclear accumulation of Cdk1-B1. In separate experiments we fertilize sea urchin eggs with sperm whose DNA has been covalently cross-linked to inhibit replication. When the pronuclei fuse, the resulting zygote nucleus does not break down for >180 minutes (equivalent to three cell cycles), even though Cdk1-B activity rises to greater than mitotic levels. If pronuclear fusion is prevented, then the female pronucleus breaks down at the normal time (average 68 minutes) and the male pronucleus with cross-linked DNA breaks down 16 minutes later. This male pronucleus has a functional checkpoint because it does not break down for >120 minutes if the female pronucleus is removed just prior to NEB. These results reveal the existence of an activity released by the female pronucleus upon its breakdown, that overrides the checkpoint in the male pronucleus and induces NEB. Microinjecting wheat germ agglutinin into binucleate zygotes reveals that this activity involves molecules that must be actively translocated into the male pronucleus.


2020 ◽  
Author(s):  
Sebastian Samer ◽  
Rajeev Raman ◽  
Gregor Laube ◽  
Michael R. Kreutz ◽  
Anna Karpova

Abstract Jacob is a synapto-nuclear messenger protein that couples NMDAR activity to CREB-dependent gene expression. In this study, we investigated the nuclear distribution of Jacob and report a prominent targeting to the nuclear envelope that requires NMDAR activity and nuclear import. Immunogold electron microscopy revealed preferential association of Jacob with the inner nuclear membrane where it directly binds to LaminB1, an intermediate filament and core component of the inner nuclear membrane (INM). The association with INM is transient; it involves a functional nuclear export signal in Jacob and a canonical CRM1-/RanGTP-dependent export mechanism that defines the residing time of the protein at the INM. Taken together, the data suggest a stepwise redistribution of Jacob within the nucleus following nuclear import and prior to nuclear export.


1996 ◽  
Vol 109 (5) ◽  
pp. 1071-1079 ◽  
Author(s):  
C. Jones ◽  
C. Smythe

The entry into mitosis is dependent on the activation of mitotic forms of cdc2 kinase. In many cell types, cyclin A-associated kinase activity peaks just prior to that of cyclin B, although the precise role of cyclin A-associated kinase in the entry into mitosis is still unclear. Previous work has suggested that while cyclin B is capable of triggering cyclin destruction in Xenopus cell-free systems, cyclin A-associated kinase is not able to support this function. Here we have expressed a full-length human cyclin A in Escherichia coli and purified the protein to homogeneity by virtue of an N-terminal histidine tag. We have found that when added to Xenopus cell-free extracts free of cyclin B and incapable of protein synthesis, the temporal pattern of cyclin A-associated cdc2 kinase activity showed distinct differences that were dependent on the concentration of cyclin A added. When cyclin A was added to a concentration that generated levels of cdc2 kinase activity capable of inducing nuclear envelope breakdown, the histone H1 kinase activity profile was bi-phasic, consisting of an activation phase followed by an inactivation phase. Inactivation was found to be due to cyclin destruction, which was prevented by mos protein. Cyclin destruction was followed by nuclear reassembly and an additional round of DNA replication, indicating that there is no protein synthesis requirement for DNA replication in this embryonic system. It has been suggested that the evolutionary recruitment of cyclin A into an S phase function may have necessitated the loss of an original mitotic ability to activate the cyclin destruction pathway. The results presented here indicate that cyclin A has not lost the ability to activate its own destruction and that cyclin A-mediated activation of the cyclin destruction pathway permitted destruction of cyclin B1 as well as cyclin A, indicating that there are not distinct cyclin A and cyclin B destruction pathways. Thus the ordered progression of the cell cycle requires the careful titration of cyclin. A concentration in order to avoid activation of the cyclin destruction pathway before sufficient active cyclin B/cdc2 kinase has accumulated.


2021 ◽  
Author(s):  
Gembu Maryu ◽  
Qiong Yang

Studies applying well-mixed cytosolic extracts found the mitotic network centered on cyclin-dependent kinase (Cdk1) performs robust relaxation oscillations with tunable frequency. However, recent work also highlighted the importance of cyclin B1-Cdk1 nuclear translocation in mitotic timing. How nuclear compartmentalization affects the oscillator properties and the accurate ordering of mitotic events, especially in embryos lacking checkpoints, remains elusive. Here we developed a Forster resonance energy transfer (FRET) biosensor for analyzing Cdk1 spatiotemporal dynamics in synthetic cells containing nuclei compared to those without. We found cellular compartmentalization significantly impacts clock behaviors. While the amplitude-frequency dependency measured in the homogeneous cytoplasm showed highly tunable frequency for a fixed amplitude, confirming predictions by non-spatial models, the frequency remains constant against cyclin variations when nuclei are present, suggesting a possible buffering mechanism of nuclear compartments to ensure robust timing. We also found all cyclin degrades within similar mitotic durations despite variable interphase cyclin expression. This scalable degradation of cyclin may further promote the precise mitotic duration. Simultaneous measurements revealed Cdk1 and cyclin B1 cycle rigorously out of phase, producing a wide orbit on their phase plane, essential for robust oscillations. We further mapped mitotic events on the phase-plane orbits. Unlike cytoplasmic-only cells showing delayed Cdk1 activation, nucleus-containing cells exhibit steady cyclin B1-Cdk1 nuclear accumulation until nuclear envelope breakdown (NEB) followed by an abrupt cyclin-independent activation to trigger anaphase. Thus, both biphasic activation and subcellular localization of Cdk1 ensure accurate ordering of substrates.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Akira Takano ◽  
Takuya Kajita ◽  
Makoto Mochizuki ◽  
Toshiya Endo ◽  
Tohru Yoshihisa

tRNAs are unique among various RNAs in that they shuttle between the nucleus and the cytoplasm, and their localization is regulated by nutrient conditions. Although nuclear export of tRNAs has been well documented, the import machinery is poorly understood. Here, we identified Ssa2p, a major cytoplasmic Hsp70 in Saccharomyces cerevisiae, as a tRNA-binding protein whose deletion compromises nuclear accumulation of tRNAs upon nutrient starvation. Ssa2p recognizes several structural features of tRNAs through its nucleotide-binding domain, but prefers loosely-folded tRNAs, suggesting that Ssa2p has a chaperone-like activity for RNAs. Ssa2p also binds Nup116, one of the yeast nucleoporins. Sis1p and Ydj1p, cytoplasmic co-chaperones for Ssa proteins, were also found to contribute to the tRNA import. These results unveil a novel function of the Ssa2p system as a tRNA carrier for nuclear import by a novel mode of substrate recognition. Such Ssa2p-mediated tRNA import likely contributes to quality control of cytosolic tRNAs.


2009 ◽  
Vol 21 (9) ◽  
pp. 52
Author(s):  
J. E. Holt ◽  
J. L. Weaver ◽  
K. T. Jones

Within the mammalian ovary, oocytes remain prophase I arrested until a hormonal cue triggers meiotic resumption. The E3 ubiquitin ligase, Anaphase-Promoting Complex with its co-activator Cdh1 (APCCdh1) is known to be essential for this process by promoting cyclin B1 degradation via the 26S proteasome. Cyclin B1 is the regulatory subunit of Maturation-Promoting Factor, forming a heterodimer with CDK1, which is essential for nuclear envelope breakdown (NEB). Here we describe the intracellular partitioning that would explain how Cdh1 activity is fine-tuned, such that cyclin B1 is maintained at sufficient levels to allow oocytes to resume meiosis but not so high as to cause premature meiosis re-entry. Using RT-PCR we detected only one splice variant in mouse oocytes, Cdh1α, which possessed a nuclear localisation signal. By immunofluorescence we confirmed the nuclear location of Cdh1 and degradation machinery components including essential subunits of the APC and 26S proteasome. In all systems studied, cyclin B1 shuttles between the cytoplasm and nucleus, with nuclear localisation occurring just before NEB. We reasoned therefore that the nuclear localisation of the APCCdh1 and 26S proteasome would aid in maintaining low nuclear levels of cyclin B1. Using two GFP-coupled cyclin B1 mutants, which differed in their intracellular location we found that nuclear accumulation of cyclin B1 was necessary in order for it to promote meiotic resumption because over-expression of nuclear-cyclin B1 accelerated entry into meiosis, whereas cytoplasmic-cyclin B1 did not. However, in milrinone-arrested GV oocytes rates of nuclear-cyclin B1 degradation were 5 fold higher than cytoplasmic-cyclin B1. Therefore we conclude that in oocytes, an increase in the nuclear-cytoplasmic ratio of cyclin B1 is an essential step in meiotic resumption, and that nuclear APCCdh1 activity guards against early meiotic resumption, until the degradation machinery is overwhelmed by cyclin B1 translocation.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 79-79
Author(s):  
Florian C. Bassermann ◽  
Christine von Klitzing ◽  
Silvia Kluempen ◽  
Ren-Yuan Bai ◽  
Tao Ouyang ◽  
...  

Abstract Ubiquitin-mediated destruction of regulatory proteins marks the vital means of controlling cell cycle progresssion. The E3 ubiquitin-ligases are prominent in this process, as they allow the transfer of ubiquitin to the target protein and mediate substrate binding specificity. Recently, a new class of E3 ligases referred to as SCF complexes has been identified that consists of four subunits:SKP1, Cul1, Roc1 and an F-box protein, the latter of which determines substrate specifity. We previously reported the cloning of NIPA (nuclear interaction partner of ALK) in complex with constitutively-active oncogenic fusions of ALK, which contribute to the development of certain lymphomas and sarcomas. Subsequently we characterized NIPA as a human F-box protein that determines a novel SCF complex (SCFNIPA) whose cell cycle regulated activity is restricted to interphase to allow for substrate expression at G2/M and mitosis. Phosphorylation of NIPA in late S-phase was found to be the underlying mechanism of SCFNIPA inactivation. We have now identified the key mitotic regulator cyclin B1 to serve as the relevant substrate of the SCFNIPA complex. This targeting process is restricted to interphase and directed towards the nuclear pool of cyclin B1. Inactivation of NIPA by siRNAs results in nuclear accumulation of cyclin B1 in interphase and an elevation of cells in S-phase and mitosis. In contrast, expression of a phosphorylation deficient NIPA mutant that retains constitutive SCFNIPA activity throughout the cell cycle arrests cells at early prophase thus delaying mitotic entry. Both effects are likely attributable to either cyclin B1 accumulation in the case of NIPA inactivation by siRNA or untimely cyclin B degradation at G2/M upon expression of the constitutively active SCFNIPA complex. Cyclin B1 is physiologically kept cytoplasmic during interphase and premature nuclear accumulation has been associated with untimely mitotic entry, loss of checkpoint control and genomic instability. Our data provides a mechanism to inhibit premature nuclear accumulation of cyclin B1 in the mammalian cell cycle. NIPAs association with NPM-ALK of ALCL has been shown to be associated with NIPA phosphorylation and thus to the inactivation of the SCFNIPA complex. The mechanism described above may therefore provide a framework for understanding how this oncogene interferes with the physiologic regulation of cyclin B - a potential mechanism by which NPM-ALK transforms hematopoietic cells.


2000 ◽  
Vol 148 (6) ◽  
pp. 1115-1122 ◽  
Author(s):  
Aljoscha Nern ◽  
Robert A. Arkowitz

Cdc24p, the GDP/GTP exchange factor for the regulator of actin cytoskeleton Cdc42p, localizes to sites of polarized growth. Here we show that Cdc24p shuttles in and out of the yeast nucleus during vegetative growth. Far1p is necessary and sufficient for nuclear accumulation of Cdc24p, suggesting that its nuclear import occurs via an association with Far1p. Nuclear export is triggered either by entry into the cell cycle or by mating pheromone. As Far1p is degraded upon entry into the cell cycle, cell cycle–dependent export of Cdc24p occurs in the absence of Far1p, whereas during mating similar export kinetics indicate that a Cdc24p–Far1p complex is exported. Our results suggest that the nucleus serves as a store of preformed Cdc24p–Far1p complex which is required for chemotropism.


2008 ◽  
Vol 183 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Anne Royou ◽  
Derek McCusker ◽  
Douglas R. Kellogg ◽  
William Sullivan

Entry into mitosis is characterized by a dramatic remodeling of nuclear and cytoplasmic compartments. These changes are driven by cyclin-dependent kinase 1 (CDK1) activity, yet how cytoplasmic and nuclear CDK1 activities are coordinated is unclear. We injected cyclin B (CycB) into Drosophila melanogaster embryos during interphase of syncytial cycles and monitored effects on cytoplasmic and nuclear mitotic events. In untreated embryos or embryos arrested in interphase with a protein synthesis inhibitor, injection of CycB accelerates nuclear envelope breakdown and mitotic remodeling of the cytoskeleton. Upon activation of the Grapes(checkpoint kinase 1) (Grp(Chk1))-dependent S-phase checkpoint, increased levels of CycB drives cytoplasmic but not nuclear mitotic events. Grp(Chk1) prevents nuclear CDK1 activation by delaying CycB nuclear accumulation through Wee1-dependent and independent mechanisms.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Richard Panayiotou ◽  
Francesc Miralles ◽  
Rafal Pawlowski ◽  
Jessica Diring ◽  
Helen R Flynn ◽  
...  

The myocardin-related transcription factors (MRTF-A and MRTF-B) regulate cytoskeletal genes through their partner transcription factor SRF. The MRTFs bind G-actin, and signal-regulated changes in cellular G-actin concentration control their nuclear accumulation. The MRTFs also undergo Rho- and ERK-dependent phosphorylation, but the function of MRTF phosphorylation, and the elements and signals involved in MRTF-A nuclear export are largely unexplored. We show that Rho-dependent MRTF-A phosphorylation reflects relief from an inhibitory function of nuclear actin. We map multiple sites of serum-induced phosphorylation, most of which are S/T-P motifs and show that S/T-P phosphorylation is required for transcriptional activation. ERK-mediated S98 phosphorylation inhibits assembly of G-actin complexes on the MRTF-A regulatory RPEL domain, promoting nuclear import. In contrast, S33 phosphorylation potentiates the activity of an autonomous Crm1-dependent N-terminal NES, which cooperates with five other NES elements to exclude MRTF-A from the nucleus. Phosphorylation thus plays positive and negative roles in the regulation of MRTF-A.


Sign in / Sign up

Export Citation Format

Share Document